• Title/Summary/Keyword: Direct Numerical Method

Search Result 687, Processing Time 0.027 seconds

Vibration suppression of rotating blade with piezocomposite materials (Piezocomposite 재료를 사용한 회전하는 블레이드의 진동억제)

  • Choi Seung-Chan;Kim Ji-Hwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.282-285
    • /
    • 2004
  • The main purpose of this study is the vibration suppression of rotating composite blade containing distributed piezoelectric sensors and actuators. The blade is modeled by thin-walled, single cell composite beam including the warping function, centrifugal force, Coriolis acceleration and piezoelectric effect. Further, the numerical study is performed m ing finite element method. The vibration of composite rotor is suppressed by piezocomposite actuators and PVDF sensors that are embedded between composite layers. A velocity feedback control algorithm coupling the direct and converse piezoelectric effect is used to actively control the' dynamic response of an integrated structure through a closed control loop. Responses of the rotating blade are investigated. Newmark time integration method is used to calculate the time response of the model. In the numerical simulation, the effect of parameters such as rotating speed, fiber orientation of the blade and size of actuators are studied in detail.

  • PDF

Prandtl-Meyer Expansion Through a Small Wavy Wall of Supersonic Flow with Condensation in a Channel (유로내에서 응축을 수반하는 초음속 유동의 미소진폭 파형벽에 의한 Prandtl-Meyer 팽창)

  • 권순범;안형준;선우은
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1582-1589
    • /
    • 1994
  • The characteristics Prandt1-Meyer expansion of supersonic flow with condensation through a wavy wall in a channel are investigated by experiment and numerical direct marching method of characteristics. In the present study, for the case of moist air flow in the type of indraft supersonic wind tunnel, the dependency of location of formation and reflection of the oblique shock wave generated by the wavy wall and the distribution of flow properties, on the specific humidity and temperature at the entrance of wavy wall and the attack angle of the wavy wall to the main stream is clarified by schlieren photograph, distribution of static pressure and Mach number, and plots of numerical results. Also, we confirm that the wavy wall plays an important key role in the formation of oblique shock wave, and that the effect of condensation on the flow field appears apparently.

Effect of Vertical Clearance Between a Rotor and Stater of a Disk-Type Drag Pump on the Performance (원판형 드래그펌프 회전자와 고정자 사이의 간극이 성능에 미치는 영향)

  • Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1501-1510
    • /
    • 2004
  • The pumping characteristics of a single-stage disk-type drag pump (DTDP) are calculated for the variation of the vertical clearance between a rotor and stator by the three-dimensional direct simulation Monte Carlo (DSMC) method. The gas flow mainly belongs to the molecular transition flow region. Spiral channels of a DTDP are cut on the both the upper and lower sides of a rotating disk, but a stationary disk is planar. The interaction between molecules is described by the variable hard-sphere model. The no time counter method is used as a collision sampling technique. The vertical clearance has a significant effect on the pumping performance. Experiments are performed under the outlet pressure range of 0.4∼533 Pa. When the numerical results are compared with the experimental data, the numerical results agree well quantitatively

Design of Porcess Parameters in Axisymmetric Multi-step Deep Drawing by a Finite Element Inverse Method (유한요소 역 해석을 이용한 축대칭 다단계 박판성형에서의 공정변수 설계에 관한 연구)

  • Cho, Cheon-Soo;Lee, Choong-Ho;Huh, Hoon
    • Transactions of Materials Processing
    • /
    • v.6 no.4
    • /
    • pp.300-310
    • /
    • 1997
  • A finite element inverse method is introduced for direct prediction of blank shapes, strain distributions, and reliable intermediate shapes from desired final shapes in axisymmetric multi-step deep drawing processes. This mothod enables the determination of process disign. The approach deals with the Hencky's deformation theory. Hill's second order yield criterion, simplified boundary conditions, and minimization of plastic work with constraints. The algorithm developed is applied to motor case forming, and cylindrical cup drawing with the large limit drawing ratio so that it confirms its validity by demonstrating resonably accurate numerical results of each problem. Numerical examples reveal the reason of difficulties in motor case forming with corresponding limit diagrams.

  • PDF

On the Modification of Gauss Integral Point of 6 Node Two Dimensional Isoparametric Element -Linear and Nonlinear Static and Dynamic Bending Analyses- (6절점 2차원 Isoparametric요소의 가우스적분점 수정에 관하여 -선형, 비선형의 정적 및 동적 굽힘해석-)

  • 김정운;정래훈;권영두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3007-3019
    • /
    • 1993
  • For the same configuration, the stiffness of 6-node two dimensional isoparametric is stiffer than that of 8-node two dimensional isoparametric element. This phenomenon may be called 'Relative Stiffness Stiffening Phenomenon.' In this paper, the relative stiffness stiffening phenomenon was studied, and could be corrected by modifying the position of Gauss integral points used in the numerical integration of the stiffness matrix. For the same deformation (bending) energy of 6-node and 8-node two dimensional isoparametric elements, Gauss integral points of 6-node element have to move closer, in comparison with those of 8-node element, in the case of numerical integration along the thickness direction.

Analysis of Added Resistance in Short Waves (단파장 영역에서의 부가저항 해석)

  • Yang, Kyung-Kyu;Seo, Min-Guk;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.338-348
    • /
    • 2015
  • In this study, the added resistance of ships in short waves is systematically studied by using two different numerical methods - Rankine panel method and Cartesian grid method – and existing asymptotic and empirical formulae. Analysis of added resistance in short waves has been preconceived as a shortcoming of numerical computation. This study aims to observe such preconception by comparing the computational results, particularly based on two representative three-dimensional methods, and with the existing formulae and experimental data. In the Rankine panel method, a near-field method based on direct pressure integration is adopted. In the Cartesian grid method, the wave-body interaction problem is considered as a multiphase problem, and volume fraction functions are defined in order to identify each phase in a Cartesian grid. The computational results of added resistance in short waves using the two methods are systematically compared with experimental data for several ship models, including S175 containership, KVLCC2 and Series 60 hulls (CB = 0.7, 0.8). The present study includes the comparison with the established asymptotic and empirical formulae in short waves.

Robustness Bounds of the Vertical Take-Off and Landing Aircraft System with Structured Uncertainties

  • Jo, Jang-Hyen
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.459-459
    • /
    • 2000
  • The purpose of this paper is the application of the techniques for the new estimation of robustness for the aircraft systems having structured uncertainties. The basic ideas to analyze the system which is the originally nonlinear is Lyapunov direct theorems. The nonlinear systems have various forms of terms inside the system equations and this investigation is confined in the form of bounded uncertainties. The number of uncertainties will be the degree of freedoms in the calculation of the robust stability regions called the robustness bounds. This proposition adopts the theoretical analysis of the Lyapunov direct methods, that is, the sign properties of the Lyapunov function derivative integrated along finite intervals of time, in place of the original method of the sign properties of the time derivative of the Lyapunov function itself. This is the new sufficient criteria to relax the stability condition and is used to generate techniques for the robust design of control systems with structured perturbations. Using this relaxing stability conditions, in this paper, the quadratic form of Lyapunov function is utilized. In this paper, the practical system of vertical take-off and landing (VTOL) aircraft is analyzed with the proposed stability criteria based upon the Lyapunov direct method. The application of numerical procedures can prove the improvements in estimations of robustness with structured uncertainties. The applicable aircraft system is assumed to be linear with time-varying with nonlinear bounded perturbations.

  • PDF

Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM

  • Tu, Yiliang;Wang, Xingchi;Lan, Yuzhou;Wang, Junbao;Liao, Qian
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.27-44
    • /
    • 2022
  • Gravelly soil is a kind of special geotechnical material, which is widely used in the subgrade engineering of railway, highway and airport. Its mechanical properties are very complex, and will greatly influence the stability of subgrade engineering. To investigate the mechanical properties and failure mechanism of gravelly soils, this paper introduced and verified a new discrete element method (DEM) of gravelly soils in large scale direct shear test, which considers the actual shape and broken characteristics of gravels. Then, the stress and strain characteristics, particle interaction, particle contact force, crack development and energy conversion in gravelly soils during the shear process were analyzed using this method. Moreover, the effects of gravel content (GC) on the mechanical properties and failure characteristics were discussed. The results reveal that as GC increases, the shear stress becomes more fluctuating, the peak shear stress increases, the volumetric strain tends to dilate, the average particle contact force increases, the cumulative number of cracks increases, and the shear failure plane becomes coarser. Higher GC will change the friction angle with a trend of "stability", "increase", and "stability". Differently, it affects the cohesion with a law of "increase", "stability" and "increase".

Time delay study for semi-active control of coupled adjacent structures using MR damper

  • Katebi, Javad;Zadeh, Samira Mohammady
    • Structural Engineering and Mechanics
    • /
    • v.58 no.6
    • /
    • pp.1127-1143
    • /
    • 2016
  • The pounding phenomenon in adjacent structures happens in severing earthquakes that can cause great damages. Connecting neighboring structures with active and semi-active control devices is an effective method to avoid mutual colliding between neighboring buildings. One of the most important issues in control systems is applying online control force. There will be a time delay if the prose of producing control force does not perform on time. This paper proposed a time-delay compensation method in coupled structures control, with semi-active Magnetorheological (MR) damper. This method based on Newmark's integration is adopted to mitigate the time-delay effect. In this study, Lyapunov's direct approach is employed to compute demanded voltage for MR dampers. Using Lyapunov's direct algorithm guarantees the system stability to design a controller based on feedback. Because of the strong nonlinearity of MR dampers, the equation of motion of coupled structures becomes an involved equation, and it is impossible to solve it with the common time step methods. In present paper modified Newmark-Beta integration based on the instantaneous optimal control algorithm, used to solve the involved equation. In this method, the response of a coupled system estimated base on optimal control force. Two MDOF structures with different degrees of freedom are finally considered as a numeric example. The numerical results show, the Newmark compensation is an efficient method to decrease the negative effect of time delay in coupled systems; furthermore, instantaneous optimal control algorithm can estimate the response of structures suitable.

Reliability analysis of laminated composite shells by response surface method based on HSDT

  • Thakur, Sandipan N.;Chakraborty, Subrata;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.203-216
    • /
    • 2019
  • Reliability analysis of composite structures considering random variation of involved parameters is quite important as composite materials revealed large statistical variations in their mechanical properties. The reliability analysis of such structures by the first order reliability method (FORM) and Monte Carlo Simulation (MCS) based approach involves repetitive evaluations of performance function. The response surface method (RSM) based metamodeling technique has emerged as an effective solution to such problems. In the application of metamodeling for uncertainty quantification and reliability analysis of composite structures; the finite element model is usually formulated by either classical laminate theory or first order shear deformation theory. But such theories show significant error in calculating the structural responses of composite structures. The present study attempted to apply the RSM based MCS for reliability analysis of composite shell structures where the surrogate model is constructed using higher order shear deformation theory (HSDT) of composite structures considering the uncertainties in the material properties, load, ply thickness and radius of curvature of the shell structure. The sensitivity of responses of the shell is also obtained by RSM and finite element method based direct approach to elucidate the advantages of RSM for response sensitivity analysis. The reliability results obtained by the proposed RSM based MCS and FORM are compared with the accurate reliability analysis results obtained by the direct MCS by considering two numerical examples.