• Title/Summary/Keyword: Direct Metal Deposition

Search Result 103, Processing Time 0.025 seconds

Analysis of Laser Control Effects for Direct Metal Deposition Process

  • Choi Joo-Hyun;Chang Yoon-Sang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1680-1690
    • /
    • 2006
  • As a promising and novel manufacturing technology, laser aided direct metal deposition (DMD) process produces near-net-shape functional metal parts directly from 3-D CAD models by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using two sets of optical height sensors is designed for monitoring the melt-pool and real-time control of deposition dimension. With the feedback height control system, the dimensions of part can be controlled within designed tolerance maintaining real time control of each layer thickness. Clad nugget shapes reveal that the feedback control can affect the nugget size and morphology of microstructure. The pore/void level can be controlled by utilizing pulsed-mode laser and proper design of deposition tool-path. With the present configuration of the control system, it is believed that more innovation of the DMD process is possible to the deposition of layers in 3-D slice.

Modeling of Deposition Height in the Uncontrolled Laser Aided Direct Metal Deposition Process (비 제어 상태의 레이저 직접 금속성형공정에서 적층높이의 모델링)

  • Chang, Yoon-Sang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.128-134
    • /
    • 2008
  • Models of the deposition heights in the uncontrolled laser aided direct metal deposition process are constructed for the enhancement of the process integrity. Linear and non-linear statistical models as well as fuzzy model are utilized as the modeling methods. The predictability of the models are evaluated with the values of the sum of square error. The algorithm to use the models in the feedback controlled system is suggested to increase the deposition height accuracy within a layer.

  • PDF

Laser-Aided Direct Metal Deposition (DMD) Technology (레이저를 이용한 직접금속조형(DMD) 기술)

  • 지해성;서정훈
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.3
    • /
    • pp.150-156
    • /
    • 2003
  • Direct Metal Deposition (DMD) is a new additive process producing three-dimensional metal components or tools directly from CAD data, which aims to take mold making and metalworking in an entirely new direction. It is the blending of five common technologies: lasers, CAD, CAM, sensors and materials. In the resulting process, alternatively called laser cladding, an industrial laser is used to locally heat a spot on a tool-steel work piece or platform, forming a molten pool of metal. A small stream of powdered tool-steel metal is then injected into the metal pool to increase the size of the molten pool. By moving the laser beam back and forth, under CNC control, and tracing out a pattern determined by a computerized CAD design, the solid metal part is eventually built line-by-line, one layer at a time. DMD produces improved material properties in less time and at a lower cost than is possible with traditional fabrication technologies.

Characteristics of Laser Aided Direct Metal Deposition Process for Tool Steel (공구강을 이용한 레이저 직접 금속조형 공정의 적층 특성)

  • 장윤상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.327-330
    • /
    • 2004
  • Laser aided direct metal deposition (LADMD) process offers the ability to make a metal component directly from 3-D CAD dimensions. A 3-D object can be formed by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using optical sensors is introduced to control laser power and powder mass flow rate. Using H13 tool steel and $CO_2$ laser system, comprehensive analysis are executed to test the efficiency of the system. In addition, the dimensional characteristics of directed deposited material are investigated with the parameters of deposition thickness, laser power, traverse speed and powder mass flow rate.

  • PDF

Characteristics of Laser Aided Direct Metal Powder Deposition Process for Nickel-based Superalloy

  • Zhang, Kai;Liu, Weijun;Shang, Xiaofeng
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.521-522
    • /
    • 2006
  • Laser additive direct deposition of metals is a new rapid manufacturing technology, which combines with computer aided design, laser cladding and rapid prototyping. The advanced technology can build fully-dense metal components directly from CAD files with neither mould nor tool. Based on the theory of this technology, a promising rapid manufacturing system called "Laser Metal Deposition Shaping (LMDS)" is being developed significantly. The microstructure and mechanical properties of the LMDS-formed samples are tested and analyzed synthetically. As a result, significant processing flexibility with the LMDS system over conventional processing capabilities is recognized, with potentially lower production cost, higher quality components, and shorter lead time.

  • PDF

Nucleation, Growth and Properties of $sp^3$ Carbon Films Prepared by Direct $C^-$ Ion Beam Deposition

  • Kim, Seong I.
    • The Korean Journal of Ceramics
    • /
    • v.3 no.3
    • /
    • pp.173-176
    • /
    • 1997
  • Direct metal ion beam deposition is considered to be a whole new thin film deposition technique. Unlike other conventional thin film deposition processes, the individual deposition particles carry its own ion beam energies which are directly coupled for the formation of this films. Due to the nature of ion beams, the energies can be controlled precisely and eventually can be tuned for optimizing the process. SKION's negative C- ion beam source is used to investigate the initial nucleation mechanism and growth. Strong C- ion beam energy dependence has been observed. Complete phase control of sp3 and sp3, control of the C/SiC/Si interface layer, control of crystalline and amorphous mode growth, and optimization of the physical properties for corresponding applications can be achieved.

  • PDF

Study on Effects of Direct Laser Melting Process Parameters on Deposition Characteristics of AlSi12 powders (AlSi12 분말의 직접 레이저 용융 적층 시 공정 조건에 따른 적층 특성에 관한 연구)

  • Seo, J.Y.;Yoon, H.S.;Lee, K.Y.;Shim, D.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.314-322
    • /
    • 2018
  • AlSi12 is a heat-resistant aluminum alloy that is lightweight, corrosion-resistant, machinable and attracting attention as a functional material in aerospace and automotive industries. For that reason, AlSi12 powder has been used for high performance parts through 3D printing technology. The purpose of this study is to observe deposition characteristics of AlSi12 powder in a direct energy deposition (DED) process (one of the metal 3D printing technologies). In this study, deposition characteristics were investigated according to various process parameters such as laser power, powder feed rate, scan speed, and slicing layer thickness. In the single track deposition experiment, an irregular bead shape and balling or humping of molten metal were formed below a laser power of 1,000 W, and the good-shaped bead was obtained at 1.0 g/min powder feed rate. Similar results were observed in multi-layer deposition. Observation of deposited height after multi-layer deposition revealed that over-deposition occurred at all conditions. To prevent over-deposition, slicing layer thickness was experimentally determined at given conditions. From these results, this study presented practical conditions for good surface quality and accurate geometry of deposits.

A Study on the Characteristics of Laser Deposition Surface and Cross-section for Metal Powder (금속 분말의 레이저 적층 시 표면 및 단면 특성에 관한 연구)

  • Hwang, Jun-Ho;Shin, Seong-Seon;Jung, Gu-In;Kim, Sung-Wook;Kim, Hyun-Deok
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.17-22
    • /
    • 2016
  • In this study, we compared the physical and chemical properties evaluation for each size in the SUS316L metal powder produced by water atomization and gas atomization. and we analyzed the experimental data in order to find the basis of a suitable metal powder (SUS316L) for DED (Direct Energy Deposition) processing. Also it evaluated the properties of each layered surface and cross section according to the number of deposition and deposition speed. In the result of optical microscopy measurements, the metal powder by water atomization was the crack generated between the deposition layer, the deposition layer was poor quality. However, metal powder by gas atomization was obtained a relatively good deposition results than metal powder by water atomization.

A Study on Laser Welding for 3D Printed Metal Plate and Polymer (금속 3D 프린팅 소재와 폴리머 레이저접합에 관한 연구)

  • Ye, Kang-Hyun;Kim, Sung-Wook;Park, Geo-Dong;Choi, Hae-Woon
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.23-27
    • /
    • 2016
  • A 3D printed metal part and thermal plastic polymer part were joined by direct laser irradiation. The 3D metal part was fabricated by using DED(Direct Energy Deposition) with STS316 material. The experiment was carried out through no patterned metal surface, 3D metal printed surface and micro laser patterned surface. The most secure joining quality was obtained at the laser micro patterned surface specimen and the counterparts of polymers were PLA and PE based thermo plastics. The applied laser power was 350Watt and the distance of patterns was maintained at $150{\mu}m$. The laser line width was optimized at $450{\mu}m$ and the laser micro pattern depth was $180{\mu}m$ for the best joining quality. Based on the result analysis, the possibility of laser material joining for metal to polymer was proposed and multi-material joining will be possible in 3D laser direct material fabrication.

Evaluation of the Productivity and Environmental Effects of Laser Aided Direct Metal Deposition Process for Remanufacturing (재제조를 위한 레이저 직접 금속조형공정의 생산성 및 환경영향의 명가)

  • Chang, Yoon-Sang
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.228-234
    • /
    • 2007
  • In this study, the productivity and environmental effects of laser aided direct metal deposition (LADMD) process which is one of promising rapid manufacturing technology is evaluated. The production time predicted using PowerMill shows that the productivity of LADMD is superior to that of conventional milling process. Though LADMD is known as an environment-friendly technology, it has a disadvantage to utilize much energy to generate laser beam. Considering both productivity and environmental effects, LADMD is expected to be widely used in remanufacturing industry.

  • PDF