• 제목/요약/키워드: Direct Injection Diesel Engine

검색결과 260건 처리시간 0.025초

직접분사식 디젤기관에서 함산소성분(Butyl Ether) 및 EGR의 적용 (The Application of Oxygenated Component(Butyl Ether) and EGR in a DI Diesel Engine)

  • 최승훈;오영택
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.134-139
    • /
    • 2008
  • This research investigated variations of the engine performance and the exhaust emission characteristic of a direct injection diesel engine by fueling a commercial diesel fuel, which was blended with the di-ether group (butyl-ether: BE). The smoke emission reduced to 26% from the diesel engine with the blending fuel (diesel fuel 80 vol-% + BE 20 vol-%)at the full engine load of 2500 rpm compared to it with the diesel fuel only. The power, torque and brake specific energy consumption of the diesel engine showed very slight differences. The NOx emission from the diesel engine, however, with the blended fuel was higher than with the commercial diesel fuel only. By applying EGR method, as a counter plan of the NOx reduction, this research obtained reductions of the smoke and NOx emission at the same time from the diesel engine with the BE blended diesel fuel.

커먼레일 분사장치를 이용한 Dimethyl Ether와 디젤연료의 연소특성 (Combustion Characteristics of Dimethyl Ether (DME) and Diesel Fuel Using a Common-rail Fuel Injection System)

  • 최욱;이주광;배충식
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.30-37
    • /
    • 2004
  • The combustion and emission characteristics of a direct injection CI engine fuelled with DME(Dimethyl Ether) and diesel fuel were compared at idle engine speed(800 rpm) with various injection parameters. An optical single cylinder diesel engine equipped with a common-rail fuel injection system was constructed to investigate combustion processes of DME and diesel fuel. The combustion images were recorded with a high-speed video camera system. The results demonstrated that the DME-fuelled engine was superior to the conventional diesel engine in terms of engine performance and emissions. The optimal injection timing of DME was located around IDC(Top Dead Center), which was roughly same as that of diesel fuel. As the injection timing was advanced much earlier than TDC, NOx (Nitric Oxides) level increased considerably. NOx emission of DME was equal or a little higher than that for diesel fuel at the same injection pressure and timing because of higher evaporation characteristics of DME. Throughout all experimental conditions, DME did not produce any measurable smoke level.

직접구동 피에조 인젝터의 CRDi 단기통 디젤엔진 연소 특성 분석 (Analysis on Combustion Characteristics of CRDi Single-cylinder Diesel Engine with Direct Needle-driven Piezo Injector)

  • 정명철;성기수;김상명;이진욱
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.108-115
    • /
    • 2014
  • In this study, experimental approaching method was applied under and single-cylinder engine to research the performance of direct needle-driven piezo injector (DPI) for CR direct-injection. As key-point factor of this DPI that relies on direct-acting operating of injector needle, unlike conventional hydraulic-servo, its nozzle needle can be directly driven by piezo actuator. Thus, effect of direct-acting injection of DPI on diesel combustion and emission characteristics was investigated under common-rail single-cylinder direct-injection engine, equipped with three different driving mechanism, including indirect-acting solenoid, piezo and DPI system. As main results, it found that a direct-acting piezo injector has higher of IMEP. And it has higher heat release rate during premixed combustion and mixing controlled combustion phase due to its higher heat release, even though nitrogen oxide (NOx) formations were increased slightly.

직접 분사식 디젤엔진에서 EGR이 배기배출물에 미치는 영향에 관한 연구 (The Effect of EGR on Exhaust Emissions in a Direct Injection Diesel Engine)

  • 장세호
    • 동력기계공학회지
    • /
    • 제8권1호
    • /
    • pp.18-23
    • /
    • 2004
  • The direct injection diesel engine is one of the most efficient thermal engines. For this reason DI diesel engines are widely used for heavy-duty applications. But the world is faced with very serious problems related to the air pollution due to the exhaust emissions of diesel engine. So, that is air pollution related to exhaust gas resulted from explosive combustion should be improved. Exhaust Gas Recirculation(EGR) is a proven method to reduce NOx emissions. In this study, the experiments-were performed at various engine loads while the EGR rates were set from 0% to 20%. The emissions trade-off and combustion of diesel engine are investigated. Hot and cooled EGR are achieved without cooling and with cooling respectively. It was found that the exhaust emissions with the EGR system resulted in a very large reduction in oxides of nitrogen at the expense of higher smoke emissions. Also, the reduction rates of NOx emissions for hot and cooled EGR are similar at load 20%.

  • PDF

직접분사식 디젤기관 배기배출물 저감을 위한 연소인자의 최적화 (An Optimization of the Combustion Parameters for Reducing Exhaust Emissions in a Direct Injection Diesel Engine)

  • 주봉철;노병준;김규철;이삼구
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.78-85
    • /
    • 2000
  • This study is to develop the diesel engine which has 6 cylinder natural aspiration direct injection type of 7.4$\ell$ with high performance, low emissions and low fuel consumption Finally the developed engine meets Korean `98 exhaust emission regulation for the city bus of heavy duty diesel engine by optimizing the various combustion parameters affecting performance and exhaust emissions. Combustion parameters are the swirl ratio of intake ports, the profile of injection pump`s cam affecting injection pressure, the design features of piston bowl of injection pump`s cam affecting injection pressure, the design features of piston bowl of combustion chamber and injector`s hole size. Through experimental analysis, various combustion parameters are optimized and the results are as follows; the swirl ratio is 2.20, the profile of injection pump`s cam is concave and re-entrant ratio, inner diameter of piston bowl and hole diameter of injector is 0.88,$\psi$64.0mm and $\psi$0.25mm respectively.

  • PDF

디젤엔진에서 경유-CNG 혼합 연소의 성능 및 배기 특성 (Performance and Emission Characteristics of Dual-fuel(Diesel-CNG) Combustion in a Diesel Engine)

  • 유경현;박진철;최규호
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.132-139
    • /
    • 2010
  • This paper describes an investigation of the performance and emission characteristics of a commercial cylinder direct injection diesel engine operating on natural gas with pilot diesel ignition. Engine tests for variations in the pilot injection timing were performed at an engine speed of 1500 rpm. This study showed that the performance of the dual-fuel diesel engine increased as the engine load increased and as the pilot diesel injection timing angle advanced. The peaks of cylinder pressure, pressure rise rate, and heat release rate all increased while the fuel ignition timing advanced with the pilot injection timing. The engine operation was stable, and the least smoke was produced at a pilot injection timing of $12^{\circ}$ before top dead center. NOx emissions were only exhausted under high-load conditions, and they increased as the pilot injection timing angle advanced.

SEOUL-10 모드에서 바이오디젤유 (5%) 적용시 커먼레일 디젤기관의 배기배출물 및 내구 특성 (Characteristics of Durability and Emission with Biodiesel Fuel (5%) in a Common Rail Direct Injection Diesel Engine at SEOUL-10 Mode)

  • 최승훈;오영택;김건회
    • Journal of Biosystems Engineering
    • /
    • 제32권2호
    • /
    • pp.97-101
    • /
    • 2007
  • A CRDI diesel engine used to commercial vehicle was fueled with diesel fuel and 5% biodiesel blended fuel (BDF 5%) and tested at the Seoul-10 mode for 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to monitor the engine performance and exhaust emissions. To check the engine parts (valve, injector), the engine was inspected after 150 hours running test. It was concluded that there was no unusual deterioration of the engine, or the changes in engine power (below 2.6%), smoke (below 6.2%), NOx (below 2%) and durability characteristics in spite of operation of 150 hours run with BDF 5%. The difference of kinetic viscosity for engine oil (before and after durability testing) was below 0.36%

직접분사식 디젤엔진에서의 분무충돌과 연료액막형성 해석 (Simulation of Spray Impingement and Fuel Film Formation in a Direct Injection Diesel Engine)

  • 김만식;민경덕;강보선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.919-924
    • /
    • 2000
  • Spray impingement model and fuel film formation model were developed and incorporated into the computational fluid dynamics code, STAR-CD. The spray/wall interaction process were modelled by considering the change of behaviour with surface temperature condition and fuel film formation. We divided behaviour of fuel droplets after impingement into stick, rebound and splash using Weber number and parameter K. Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. A fuel film formation model was developed by Integrating the continuity, the Navier-Stokes and the energy equations along the direction of fuel film thickness. The validation of the model was conducted using diesel spray experimental data and gasoline spray impingement experiment. In all cases, the prediction compared reasonably well with experimental results. Spray impingement model and fuel film formation model have been applied to a direct injection diesel engine combustion chamber.

  • PDF

편심된 보울의 연소실을 갖는 디젤 엔진의 연소 특성 해석 (Combustion Characteristics in the Offset Bowl Combustion Chamber Diesel Engine)

  • 김홍석;성낙원
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.54-65
    • /
    • 1999
  • In this study, the flow field, spray structure, and combustion process were investigated in a direct injection diesel engine having an offset bowl in a combustion chamber. The KIVA-3V code was used in this study. In order to obtain accurate results, a droplet atomization model, wall impingement model, and ignition delay concept were added to KIVA-3V code. The results showed that the offset bowl engine had a large vortex flow. The direction of this flow counteracted to the direction of fuel injection in one side of combustion chamber. It decreased local turbulent kinetic energy and eventually nonuniform combustion was resulted in an offset bowl engine. In comparison with a center bowl engine case, the peak cylinder pressure was decreased about 6%. Finally , the effect of swirl on combustion was investigated in an offset bowl engine . As the became stronger, the nouniform characteristics in combustion were increased.

  • PDF

Effects of Engine Loads on Exhaust Emissions and Particulate Matter with Morphological Characteristics in a Common Rail 4 Cylinder Diesel Engine

  • Roh, Hyun-Gu;Choi, Seuk-Cheun;Lee, Chang-Sik
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.57-66
    • /
    • 2010
  • The purpose of this paper is to investigate the effects of fuel injection strategy and engine load on the structure and emissions characteristics of a DI diesel engine with 1.6L of piston displacement. In order to analyze the particulate matter (PM) and exhaust emissions characteristics in a direct injection diesel engine, the quantity of PM and exhaust emissions (including HC, CO and $NO_X$) were investigated under various injection strategies and engine loads. Two different injection strategies (one pilot/main injection and two pilots/main injection) was investigated under the various engine loads. A thermophoretic sampling method with a scanning electron microscope (SEM) were used to obtain the PM morphology (including primary particles, the size of the agglomerates, the number of agglomerates, the fractal dimension). The quantity of soot gradually increased with increasing engine load at both injection strategies. The primary particles in the PM agglomerates indicate that the average of the primary particle and radius of gyration increased as the engine load increased.