• Title/Summary/Keyword: Direct Current (DC)

검색결과 432건 처리시간 0.026초

tDCS를 결합한 고강도 인터벌 훈련이 축구선수의 유산소 운동능력에 미치는 영향 (The Effects of Transcranial Direct Current Stimulation Combined High Intensity Interval Training on Aerobic Exercise Capacity of the Soccer Player)

  • 양대중;엄요한
    • 대한통합의학회지
    • /
    • 제9권4호
    • /
    • pp.105-117
    • /
    • 2021
  • Purpose : This study examined the effect of transcranial direct current stimulation (tDCS) combined high intensity interval training (HIIT) on the aerobic exercise capacity of college soccer players. Methods : The subjects of this study were 30 college soccer players. They were divided into a high intensity interval training group combining transcranial direct current stimulation (Group I) and a high intensity interval training group (Group II). Each group had 15 subjects randomly assigned. After receiving general soccer training, each group additionally received high intensity interval training combined with transcranial direct current stimulation and high intensity interval training for 30 minutes 5 times a week for 8 weeks. Their VO2max and 20 meter shuttle run test, Yo-Yo intermittent recovery test were analyzed before the intervention. After 8 weeks of intervention, the above items were re-measured and an intergroup analysis was performed. Results : As a result of comparative analysis of VO2max intake between groups, 20 meter shuttle run test and Yo-Yo intermittent recovery test, a statistically significant difference was found. The high intensity interval training group (Group I) combined with transcranial direct current stimulation showed a significant difference in aerobic exercise capacity compared to the high intensity interval training group (Group II). Conclusion : These results showed that high intensity interval training group combined with transcranial direct current stimulation was more effective for aerobic exercise. Based on this study, this study proposes an effective program for patients as well as elite athletes. In the future, it is necessary to develop an effective transcranial direct current stimulation program and to study how to apply it for various patients.

MMC-HVDC 시스템용 서브모듈 성능시험회로와 제어기법 (Performance Test Circuit and Control Method for Submodule of MMC-HVDC System)

  • 조광래;서병준;박권식;김학수;허진용;노의철
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.452-458
    • /
    • 2019
  • This study proposes a new test circuit and control method for the submodules of modular multilevel converter (MMC)-based HVDC systems. The test current of conventional submodule test circuits cannot provide the DC offset components or may have some distortion in the linearized current with the DC offset. The proposed scheme can provide not only the DC component but also linearized current without distortion. Therefore, the submodule test current waveform is relatively similar to that of a real submodule consisting of an MMC-based HVDC system. The validity of the proposed circuit and control method is verified through a simulation and experiment.

New Single-stage Interleaved Totem-pole AC-DC Converter for Bidirectional On-board Charger

  • 함자 벨카멜;김상진;김병우;신양진;최세완
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.192-194
    • /
    • 2018
  • In this paper a new single-stage ac-dc converter with high frequency isolation and low components count is introduced. The proposed converter is constructed using two interleaved boost circuits in the grid side and non-regulating full bridge in the DC side. An optimized switching is implemented on the two interleaved boost circuits resulting in a ripple-free grid current without a ripple cancellation network; hence very small filter inductors are used. A simple and reliable closed-loop control system is easily implemented, since the phase-shift angle is the only independent variable. Moreover, current imbalance is avoided in the presented topology without current control loop in each phase. The proposed charger charges the battery with a sinusoidal-like current instead of a constant direct current. ZVS turn on of all switches is achieved throughout the operation in both directions of power flow without any additional components.

  • PDF

1.2[kW]급 연료전지용 전력변환장치의 개발 (Development of 1.2[kW]Class Fuel Cell Power Conversion System)

  • 서기영;김칠용;조만철;김정도;윤영변;김홍신;박도형;하성현
    • 조명전기설비학회논문지
    • /
    • 제21권6호
    • /
    • pp.117-125
    • /
    • 2007
  • 연료전지 발전시스템에서는 DC-DC 승압용 컨버터와 DC-AC 인버터가 필요하다. 그러므로 본 논문에서는 연료전지의 전압을 380[VDC]로 승압하기 위한 절연형 DC-DC 컨버터와 단상 220[VAC]로 변환하기 위한 LC필터를 가진 PWM 인버터로 구성된 전력변환장치를 제안하였다. 특히 제안한 연료전지 시스템용 고효율 DC-DC 컨버터는 위상천이 PWM 제어법을 이용하여 부분 공진에 의한 ZVS를 실현하였으며, 일정 스위칭 주파수화 및 스위치의 스위칭 손실, 피크 전압과 전류를 저감시켰다. 그리고, 정류회로에 2개의 인덕터를 첨가하여 리플성분이 저감된 직류전압과 전류를 부하측에 안정하게 공급할 수 있었다. 또한, 넓은 출력 전압 조정에도 효율을 92[%]정도 얻을 수 있다. 이상과 같이 결과는 시뮬레이션과 실험을 통하여 그 타당성을 확인하였다.

AC 및 DC 송전 선로 병렬 연계에 따른 정상상태 커플링 영향 분석 (The Study of Steady-State Interaction Between AC and DC Lines on the Same Transmission Tower)

  • 윤종수
    • 전기학회논문지
    • /
    • 제59권7호
    • /
    • pp.1221-1225
    • /
    • 2010
  • The application of the AC and DC lines on the same transmission tower is an economical and practical approaching that increase the power transmission capacity of an existing transmission corridor. But, In this case, Inductive and capacitive coupling between AC and DC lines on the same tower should be investigated in advance. According to the installation plan of 80kV ${\pm}$60MW bipole HVDC in Cheju, KOREA that will be commissioned until 2011, DC lines will parallely operate with 154kV 2 AC lines in existed 154kV AC 4 lines transmission tower. This paper presents the steady state analysis results about the interaction between 154kV AC and 80kV DC lines in the same transmission tower.

AC 및 DC 송전선로 과도상태 커플링 영향 분석 (The Study of Transient Coupling between AC and DC lines on the Same Transmission Tower)

  • 윤종수
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.14-19
    • /
    • 2011
  • The implemetation of the AC and DC lines on the same transmission tower is an economical and practical approaching that increase the power transmission capacity of an existing transmission corridor. But, In this case, Inductive and capacitive coupling between AC and DC lines on the same tower should be investigated in advance. According to the installation plan of ${\pm}80kV$ 60MW bipole HVDC in Jeju island, KOREA that will be commissioned until 2011, DC lines will parallely operate with 154kV 2 AC lines in existed 154kV AC 4 lines transmission tower. This paper presents the transient analysis results about the interaction between 154kV AC and 80kV DC lines in the same transmission tower.

LVDC 배전을 위한 75kW급 양방향 컨버터 연구 (A Study on 75kW Bidirectional Converter for LVDC Distribution)

  • 이정용;김호성;조진태;김주용;조영훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.432-433
    • /
    • 2018
  • A new DC-DC converter circuit for LVDC(Low Voltage Direct-Current) distribution is proposed. DC-DC converter consists of two stage which are voltage balancer and converter stage. The balancing circuit adjust balance input voltage of converter circuit and compensate for unbalanced loads and short circuits. The converter circuit control the bipolar output voltage ${\pm}750V$. Simulation is carried out for this DC-DC converter system.

  • PDF

Operational characteristics analysis of a 8 mH class HTS DC reactor for an LCC type HVDC system

  • Kim, S.K.;Go, B.S.;Dinh, M.C.;Kim, J.H.;Park, M.;Yu, I.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권1호
    • /
    • pp.32-35
    • /
    • 2015
  • Many kinds of high temperature superconducting (HTS) devices are being developed due to its several advantages. In particular, the advantages of HTS devices are maximized under the DC condition. A line commutated converter (LCC) type high voltage direct current (HVDC) transmission system requires large capacity of DC reactors to protect the converters from faults. However, conventional DC reactor made of copper causes a lot of electrical losses. Thus, it is being attempted to apply the HTS DC reactor to an HVDC transmission system. The authors have developed a 8 mH class HTS DC reactor and a model-sized LCC type HVDC system. The HTS DC reactor was operated to analyze its operational characteristics in connection with the HVDC system. The voltage at both ends of the HTS DC reactor was measured to investigate the stability of the reactor. The voltages and currents at the AC and DC side of the system were measured to confirm the influence of the HTS DC reactor on the system. Two 5 mH copper DC reactors were connected to the HVDC system and investigated to compare the operational characteristics. In this paper, the operational characteristics of the HVDC system with the HTS DC reactor according to firing angle are described. The voltage and current characteristics of the system according to the types of DC reactors and harmonic characteristics are analyzed. Through the results, the applicability of an HTS DC reactor in an HVDC system is confirmed.

Enhancement of the Corrosion Resistance of CrN Film Deposited by Inductively Coupled Plasma Magnetron Sputtering

  • Chun, Sung-Yong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • 제20권3호
    • /
    • pp.112-117
    • /
    • 2021
  • Inductively coupled plasma magnetron sputtering (ICPMS) has the advantage of being able to dramatically improve coating properties by increasing the plasma ionization rate and the ion bombardment effect during deposition. Thus, this paper presents the comparative results of CrN films deposited by direct current magnetron sputtering (dcMS) and ICPMS systems. The structure, microstructure, and mechanical and corrosive properties of the CrN coatings were investigated by X-ray diffractometry, scanning electron microscopy, nanoindentation, and corrosion-resistance measurements. The as-deposited CrN films by ICPMS grew preferentially on a 200 plane compared to dcMS on a 111 plane. As a result, the films deposited by ICPMS had a very compact microstructure with high hardness. The nanoindentation hardness reached 19.8 GPa, and 13.5 GPa by dcMS. The corrosion current density of CrN film prepared by ICPMS was about 9.8 × 10-6 mA/cm2, which was 1/470 of 4.6 × 10-3 mA/cm2, the corrosion current density of CrN film prepared by dcMS.

탠덤형 자석 소호기를 사용한 760V급 직류 개폐기의 차단 특성 (760 V-Class DC Switch Breaking Characteristics Using Tandem Type Magnet Extinguisher)

  • 김효성
    • 전력전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.175-179
    • /
    • 2022
  • Magnetic arc extinguishing technology is effective as an extinguishing device for low-voltage direct current (DC) circuit breakers with a resistive load of ≤4 kW. The separation distance between the magnet and the electrical contact must be shortened to increase the magnetic arc extinguishing force. However, if the magnet is installed too close to the electrical contact points, the magnet is exposed to high temperatures due to the arc current generated when the load current is cut off and the magnetism is lost. To solve this problem, the effective magnetic flux density at the electrical contact can be maintained high by placing the arc extinguishing magnet in a tandem structure with the electrical contact point between them, and the proper separation distance between the contact points and the magnet can be maintained. In addition, an electric arc extinguishing technology that emits arc energy using a series circuit of diode and resistor is used to suppress the continuous arc voltage generated by the inductive load. For the proposed circuit breaker, the breaking characteristics are analyzed through the breaking test for the DC load of the 760 V level, the load power of 4 kW, and the time constant of 5 ms, and an appropriate arc extinguishing design guideline is proposed.