• Title/Summary/Keyword: Direct Control Scheme

Search Result 349, Processing Time 0.023 seconds

Development of a Direct Drive Scara Robot Manipulator and PC-Based Preliminary Force/Motion Control (직접구동식 스카라 로봇의 개발 및 개인용 컴퓨터를 이용한 기초 힘/운동 제어)

  • Kim, D.H.;Park, D.Y.;Park, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.25-31
    • /
    • 1995
  • In this paper, a direct drive scalar robot manipulator is constructed and its mechanical machanism for operation is explained. Also, a motion controller board for the direct drive robot manipulator was developed where the IBM 486 computer is the main controller. For the developed direct drive robot, a force/motion control algorithm based on an active compliance scheme is developed. A preliminary experiment using the developed direct drive for a peg-in-hole job was done by implementing the control algorithm.

  • PDF

Modeling and Control of IGBT Converter-Based High-Voltage Direct Current System

  • Kim, Hong-Woo;Ko, Suk-Whan;An, Hae-Joon;Jang, Gil-Soo;Ko, Hee-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.97-104
    • /
    • 2011
  • This paper presents modeling and control for the emerging IGBT converter-based high-voltage direct-current system (IGBT-HVDC). This paper adds to the representation of the IGBT-HVDC system in the dq-synchronous reference frame and its decoupled control scheme. Additionally, since the IGBT-HVDC is able to actively support the grid due to its capacity to control independently active and reactive power production, a reactive power control scheme is presented in order to regulate/contribute to the voltage at a remote location by taking into account its operational state and limits. The ability of the control scheme is assessed and discussed by means of simulations using ahybrid power system, which consists of a permanent magnetic synchronous-generator (PMSG) based wind turbine, an IGBT-HVDC, and a local load.

A Hybrid DTC-DSC Drive for High Performance Induction Motor Control

  • Jidin, Auzani;Idris, Nik Rumzi Nik;Yatim, Abdul Halim Mohamed;Sutikno, Tole;Elbuluk, Malik E.
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.704-712
    • /
    • 2011
  • This paper describes a hybrid induction motor drive system incorporating DTC-hysteresis and Direct Self Control (DSC) schemes to achieve excellent dynamic performance. The control scheme is switched from a circular to a hexagonal flux locus whenever a dynamic condition is encountered. On the other hand, when the motor operates under steady state conditions, a circular flux locus is used. Without major modifications to the simple structure of a basic DTC, hexagonal flux locus operation is established by modifying the flux error status, before it is fed to the look-up table. The feasibility of the proposed hybrid scheme to achieve excellent control performance is verified by experimental results.

A Study on the Control Method for Torque Ripple Reduction during Phase Commutation (SRM의 상전환 구간 토크리플 저감을 위한 제어기법에 관한 연구)

  • Kim, Tae-Hyoung;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.333-337
    • /
    • 2010
  • In this paper, an advanced torque control scheme of Switched Reluctance Motor(SRM) using modified non-linear logical TSF (Torque Sharing Function) with PWM is presented. In the proposed control scheme, a simple calculation of PWM duty ratio and switching rules from DITC(Direct Instantaneous Torque Control) can reduce the torque ripple with fixed switching frequency. The proposed control scheme is verified by the computer simulations and experimental results.

Direct Torque Control of Squirrel Cage Typed Induction Motor Using Fuzzy Controller (퍼지제어기를 이용한 농형 유도 전동기의 직접 토크제어)

  • Han, Sang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2008
  • The direct torque control method of an inverter fed squirrel cage typed induction motor using fuzzy logic controller has been proposed. This method is suitable for the traction which requires a fast torque response during the star-up and step change. The fuzzy control algorithm based upon the control principles of conventional DSC(Direct Self Controller) is developed. The fuzzy algorithm is tarried out by defuzzification strategy of the fuzzy output extracted from the possibility distribution of an inferred fuzzy control rule. The flux and torque of an induction motor are estimated by the dynamic model of the rotor flux field-oriented scheme which has decoupling characteristics and excellent dynamic response over a wide speed range. The proposed controller shows a good dynamic response. Moreover, since the fuzzy controller possesses highly adaptive capability, the performance of fuzzy controller is quite robust and insensitive to the motor parameters and change of operation conditions.

Current controller using the modified delay compensator under the control input saturation (제어전압제한을 이용한 지연시간보상 전류제어기)

  • 이진우;강병희;백상기;민종진
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.341-344
    • /
    • 1997
  • This paper suggests the modified delay compensation scheme under the control input saturation in order to improve the control performance. This scheme uses the real estimated control input instead of the direct command control input. The simulation results show that this scheme can improve the current control performance under the delay time and the limited control input.

  • PDF

Direct Torque Control for Induction Motors Using Fuzzy Variable Switching Sector (퍼지 가변스위칭 섹터기법를 이용한 유도전동기의 직접토크 제어)

  • 윤인식;서영민;류지수;이기상;홍순찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.233-233
    • /
    • 2000
  • Direct torque control (DTC) scheme provides a very quick torque response without the complex field-orientation block and inner current regulation loop. DTC is known as an appropriate scheme for high power induction motet drives because it can be used at lower switching frequency. There are two major drawbacks with the application of DTC schemes : one is large current harmonics due to flux drooping in a low speed range, the other is that the inverter switching frequency is varying according to motor parameters and operating speed. Switching devices in the power electronics drives should be supported for relatively high switching frequency. In this paper, a P-type fuzzy controller to realize the variable switching sector scheme and a PID-type fuzzy switching frequency regulator are adopted. A meaningful contribution of this paper is to propose a simple realization scheme of the fuzzy switching frequency regulator. Simulation results show the effectiveness of those propositions.

  • PDF

The study of Direct Torque Controlled BLDC Motor Drive with Sinusoidal EMF (정현파 역기전력을 갖는 BLDC의 직접토크 제어에 관한 연구)

  • Kim J.S.;Kim C.U.;Cho S.E.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07a
    • /
    • pp.1-5
    • /
    • 2004
  • This paper describe a control scheme for direct torque control of BLDC Motor. The proposed Luenberger Observer scheme calculate flux errors in order to control the torque and flux more correctly. This proposed control scheme has not the requirement of a separate current regulator and proportional-integral (PI) control of the flux and torque, there by improving transient performance and also has the advantage of less torque ripple in steady state with a fixed switching period. The effect of proposed method has been proven by simulations.

  • PDF

A new vector control performance for induction motor with SVPWM (공간전압 벡터제어를 통한 유도전동기의 새로운 벡터제어성능연구)

  • Byun, Yeun-Sub;Jang, Dong-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2246-2248
    • /
    • 2001
  • This paper presents a new vector control scheme for induction motor. An exact knowledge of the rotor flux position is essential for a high-performance vector control. The position of the rotor flux is measured in the direct schemes and estimated in the indirect schemes. Since the estimation of the flux position requires a priori knowledge of the induction motor parameters, the indirect schemes are machine parameter dependent. The rotor and stator resistance among the parameters change with temperature. Variations in the parameters of induction machine cause deterioration of both the steady state and dynamic operation of the induction motor drive. Several methods have presented to minimize the consequences of parameter sensitivity in indirect scheme. In this paper, new estimation scheme of rotor flux position is presented to eliminate sensitivity due to variation in the resistance. The simulation is executed to verify the proposed vector control performance and to compare its performance with that of indirect and direct vector control.

  • PDF

New Fuzzy Variable Switching Sector Technique for DTC on Induction Motor Drives (유도전동기 직접토크제어를 위한 새로운 퍼지 가변 스위칭섹터 기법)

  • 柳 志 帥;洪 淳 瓚;李 起 常
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.137-148
    • /
    • 2002
  • Direct Torque Control(DTC) is considered to be an useful control scheme of high performance induction motor drives because the scheme provides a quick torque response without requiring the complex field-orientation block and inner current regulation loop. Among a few drawbacks of the conventional DTC scheme, large current harmonics due to flux drooping phenomenon in a low speed range may be the major difficulty In order to remove the difficulty, a fuzzy variable switching sector scheme and its real-time implementation algorithm are proposed in this paper. A DSP based control board is designed for the Induction motor drives with the DTC scheme including the fuzzy switching sector algorithm. Simulation and experimental results show the effectiveness of the proposed scheme.