• Title/Summary/Keyword: Dipole relaxation

Search Result 41, Processing Time 0.024 seconds

Dielectric Relaxation Time for Alkyl Chain of Phospolipid Organic Monolayers Film (인지질 유기단분자막의 알킬체인에 의한 유전완화시간)

  • Song, Jin-Won;Cho, Su-Young;Kim, Young-Keun;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.111-115
    • /
    • 2004
  • In this paper, evaluation of physical properties about dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of phospolipid monomolecular DLPC, DMPC using pressure stimulus. As a result, the changed surface pressure, displacement current and the transition forms of dipole moment of phospolipid monomolecular in area per molecular by pressure stimulus were conformed well. It was known that the monolayers by linear relationship for decision of dielectric relaxation time between compressure speed $\alpha$ and molecule area $A_m$ By according to the linear relationship relation get that frictional constant $\xi$, DLPC was $1.89{\times}10^{-19}$[Js] and DMPC was $0.722{\times}10^{-19}$[Js]. It is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area.

  • PDF

A Study on the Electrical Physical Properties of Organic Thin Films for Manufacture in Power Device (전력용 소자 제작을 위한 유기박막 전기물성에 관한 연구)

  • Cho, Su-Young;Kim, Young-Keun;Choi, Young-Il;Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05c
    • /
    • pp.37-41
    • /
    • 2004
  • In this paper, evaluation of physical properties about dielectric relaxation phenomena by the detection of the surface pressures and displacements current on the monolayer films of phospolipid monomolecular DLPC, DMPC using pressure stimulus. As a result, the changed surface pressure, displacement current and the transition forms of dipole moment of phospolipid monomolecular in area per molecular by pressure stimulus were conformed well. It was known that the monolayers by linear relationship for decision of dielectric relaxation time between compressure speed and molecule area By according to the linear relationship relation get that frictional constant, DLPC was $1.89{\times}10^{-19}$ [Js] and DMPC was $0.722{\times}10^{-19}$[Js]. lt is found that the phospolipid monolayer of dielectric relaxation takes a little time and depend on the molecular area.

  • PDF

Domain Structure of Liguid Water According to the Theory of Intermolecular Forces

  • Mu Shik Jhon;Ung In Cho
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.135-141
    • /
    • 1972
  • In the past years, a number of theories have been published to elucidate the structure of liquid water. common to most of these theories is that water mainly consist of several different kinds of clusters and also hydrogen bonds in water may be bent to some degree. Recentrly, in a series of paper, Jhon and Eyring successfully explained thermodynamic, dielectric, surface and transport properites of water, assuming that it contains small domains of about 46 molecules. According to the theory, the cluster size does not change with temperature, but the cluster concentration changes. In this paper, the potential function for the hydrogen bond, the dispersion energy and dipole-dipole interaction terms. The calculated results show that the domain of nearly 46 molecules is energetically most probable, and its size is independent of temperature. And also, we evaluated the effect of angel variation of the bent hydrogen bond. In addition, the relaxation energy different for ice and water is also explained by this method.

  • PDF

A Study on the Dielectric Properties of Phospholipid Organic Thin Films (인지질 유기박막의 유전특성에 관한 연구)

  • Song, Jin-Won;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1983-1985
    • /
    • 1999
  • The dielectric constant of a monolayer on a material surface was calculated with consideration of the local field acting on polar molecules with a permanent dipole moment, and the interaction working between the molecules and a material. It is revealed that the dielectric relaxation time r of monolayers in the isotropic polar orientational phase is determined using a linear relationship between the monolayers compression speed a and the molecular area. The dielectric relaxation time of phospholipid monolayers was examined on the basis of analysis developed here.

  • PDF

Dielectric Changes During the Curing of Epoxy Resin Based on the Diglcidyl Ether of Bisphenol A (DGEBA) with Diamine

  • 김홍경;차국헌
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1329-1334
    • /
    • 1999
  • The curing characteristics of diglycidyl ether of bisphenol A (DGEBA) with diaminodiphenylmethane (DDM) as a curing agent were studied using differential scanning calorimetry (DSC), rheometrics mechanical spectrometry (RMS), and dielectric analysis (DEA). The isothermal curing kinetics measured by DSC were well represented with the generalized auto-catalytic reaction model. With the temperature sweep, the inverse relationship between complex viscosity measured by RMS and ionic conductivity obtained from DEA was established indicating that the mobility of free ions represented by the ionic conductivity in DEA measurement and the chain segment motion as revealed by the complex viscosity measured from RMS are equivalent. From isothermal curing measurements at several different temperatures, the ionic conductivity contribution was shown to be dominant in the dielectric loss factor at the early stage of cure. The contribution of the dipole relaxation in dielectric loss factor became larger as the curing further proceeded. The critical degrees of cure, at which the dipolar contribution in the dielectric loss factor starts to appear, increases as isothermal curing temperature is increased. The dielectric relaxation time at the same degree of cure was shorter for a sample cured at higher curing temperature.

Nonlinear Dielectric Relaxation in VDCN/VPr Copolymer (VDCN/VPr 공중합체(共重合體)의 비선형(非線形) 유전특성(誘電特性))

  • Lee, Duck-Chool;Kang, Dae-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.356-358
    • /
    • 1989
  • Linear and nonlinear complex permittivities have been measured for an alternating copolymer of vinylidene cyanide(VSCN) with vinyl propionale(VPr). It is found that the third order permittivity ${\varepsilon}_3$ depends upon frequency according to a function V ${\varepsilon}_3$/ ${1+(j{\omega}{\tau}_3)^{\beta}}^3$ while the linear permittivity ${\varepsilon}_1$obeys a Debye type function ${\nabla}{\varepsilon}_1$/ {1+$(j{\omega}{\tau}_1)^{\beta}$}. Experimental results are well fitled by predicted functions except at low frequency where dc conduction dominates. The relaxation times ${\tau}_1$ and ${\tau}_3$ at same teperature are nealy equal and depend upon temperature according to WLF form. The relaxation strengths ${\nabla}{\varepsilon}_1$ and ${\nabla}{\varepsilon}_3$ have a peak at the vicinity of glass transition temperature (Tg). The strength ${\nabla}{\varepsilon}_1$ has a value of -9 order and ${\nabla}{\varepsilon}_3$ has a negative value of -25 order. The analysis of mechanism by combined knowledge about linear and nonlinear permittivities and dipole moment gives us an imformation of the electrical and thermal dipolar motions in this copolymer.

  • PDF

Study on TSD Characteristics of LiF ( Mg , Cu , P ) Single Crystal (LiF ( Mg , Cu , P ) 단결정의 TSD 특성에 관한 연구)

  • 도시홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 1990
  • The microscopic relaxation parameters for the single crystal were measured by using thermally stimulated depolarization (TSD). Initial rise method, various heating rate method and total glow peak method were used for the determination of the activation energy and Debye relaxation time from TSD glow curves. Activation energy, pre-exponential factor and relaxation time for impurity-vacancy dipole reorientation were 0.55eV, 1.97$\times$10 super(-12) sec and 12.19sec in average, respectively. Dielectric dissipation factor for the crystal was calculated from the measured TSD glow curve, its value being about 3$\times$10 super(-2).

  • PDF

The Dependence of Temperature and Frequency for the Dissipation Factor in Liquid Dielectrics (액체절연체(실리콘유) 유전정접의 온도및 주파수의존성)

  • 이돈희;소병문;이수원;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.85-89
    • /
    • 1993
  • Silicone oil exhibits the properies of both organic and inorganic substances and, thus, it has many superior properties such as higher thermal resistance and lower thermal oxidation level when compared to other dielectric liquids. In order to investigate the dielectric characteristics, dielectric liquids of viscosity 1 [cSt] is chosen as the specimen and experiment is performed in the temperature range of 20∼65 [$^{\circ}C$] and frequency range of 30∼1${\times}$10$\^$6/ [Hz] respectively. As a result, the observed linear decrease in dissipation factor at the frequency range below 3 [kHz] is due to the influence of frequency, whereas the increase in dissipation factor at higher frequency range is contributed by electrode's resistance. At a fixed frequency of 30 [kHz], increasing temperature results in higher peak value and wide width of the absorption curve. This is due to the increase in dipole and viscosity. As temperature increases, dipole moment is decreased from 0.98 to 0.64 [debye]. The activation energy which causes the relaxation and loss of dielectric is obtained about 15 [kcal/mole].

  • PDF

Dielectric Characteristics in Smectic Phase

  • Song, Jun-Ho;Coi, Suck;Kim, Yong-Bae;Kumar, Satyendra;Souk, Jun-Hyung;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.419-422
    • /
    • 2002
  • We have studied dielectric properties in the smectic phases of 4-(6-ethoxy-1-trifluoromethyl-hexyloxycarbonyl)-phenyl-4-Nonyloxybiphenyl-4-carboxylat ( TFMEOHPNBC ) having fluorine attached to one of its benzene rings. Homogeneous and homeotropic 1.5 and 5${\mu}m$ thick test cells were prepared to analyze molecular dynamic property. We measured capacitance as a function of temperature in the frequency range between 20 Hz and 100 kHz by using HP4284A LCR meter. We observed that the homogeneous cell has high dielectric constant causing dipole moment in smectic $C^{\ast}$ phase, but we can see the dipole moments are canceled out in antiferroelectric phase. It is found that there are two kind of the relaxation director fluctuation below 100 kHz. The first is ionic or space charge contribution below 10 Hz, and the second is Goldstone mode near 1-2 kHz. We will discuss molecular dynamics in smectic phase from extra information such as x-ray and electrooptic data.

  • PDF