• Title/Summary/Keyword: Dip-coated

Search Result 188, Processing Time 0.025 seconds

Preparation of silver stabilizer layer on coated conductor by continuous dip coating method using organic silver complexes (유기 은 착체 화합물을 코팅용액으로 사용하여 연속적인 담금코팅방법에 의한 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Ji-Cheol;Park, Sin-Keun;Kim, Byeong-Joo;Kim, Jae-Geun;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Silver stabilizing layer of coated conductor has been prepared by dip coating method using organic silver complexes containing 10 wt% silver as a starting material. Coated silver complex layer was dried in situ with hot air and converted to crystalline silver by post heat treatment in flowing oxygen atmosphere. A dense continuous silver layer with good surface coverage and proper thickness of 230 nm is obtained by multiple dip coatings and heat treatments. The film heat treated at $500^{\circ}C$ showed good mechanical adhesion and crystallographic property. The interface resistivity between superconducting YBCO layer and silver layer prepared by dip coating was measured as $0.67\;{\times}\;10^{-13}\;{\Omega}m^2$. Additional protecting copper layer with the thickness of $20\;{\mu}m$ was successfully deposited by electroplating. The critical current measured with the specimen prepared by dip coating and sputtering on same quality YBCO layer showed similar value of ~140 A and proved its ability to replace sputtering method for industrial production of coated conductor.

Structure of Surface Oxide Formed on Zinc-Coated Steel Sheet During Hot Stamping

  • Shota Hayashida;Takuya Mitsunobu;Hiroshi Takebayashi
    • Corrosion Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.221-227
    • /
    • 2024
  • During hot stamping of hot-dip zinc-coated steel sheets such as hot-dip galvanized steel sheets and hot-dip galvannealed steel sheets, an oxide mainly composed of ZnO is formed on the sheet surface. However, excessive formation of ZnO can lead to a decrease in the amount of metal Zn in the coating layer, decreasing the corrosion resistance of hot-stamped members. Therefore, it is important to suppress excessive formation of ZnO. While the formation of Al oxides and Mn oxides along with ZnO layer during the hot stamping of hot-dip zinc-coated steel sheets can affect ZnO formation, crystal structures of such oxides have not been elucidated clearly. Thus, this study aimed to analyze structures of oxides formed during hot stamping of hot-dip galvannealed steel sheets using transmission electron microscopy. Results indicated the formation of an oxide layer comprising ZnAl2O4 at the interface between ZnO and the coating layer with Mn3O4 at the outermost of an oxide layer.

A Simulation Case Study on Impact Safety Assessment of Roadside Barriers Built with High Anti-corrosion Hot-dip Alloy-coated Steel (용융합금도금 강판 적용 노측용 방호울타리 충돌 안전성 평가 해석 사례 연구)

  • Noh, Myung-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.83-89
    • /
    • 2016
  • As the world's industrial development quickens, the highways and regional expressways have been expanding to serve the logistics and transportation needs of people. The burgeoning road construction has led to a growing interest in roadside installations. These must have reliable performance over long periods, reduced maintenance and high durability. Steel roadside barriers are prone to corrosion and other compromises to their functionality. Therefore, using high anti-corrosion steel material is now seen as a viable solution to this problem. Thus, the objective of this paper is to expand the scope of applications for high anti-corrosion steel material for roadside barriers. This paper assesses the impact safety such as structural performance, occupant protection performance and post-impact vehicular response performance by a simulation review on roadside barriers built with high strength anti-corrosion steel materials named as hot-dip zinc-aluminium-magnesium alloy-coated steel. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve safe impact performance as well as save maintenance cost.

Preparation and Electrochemical Characterization of SnO2/Ti Electrode by Coating Method (코팅 방법에 따른 SnO2/Ti 전극의 제조 및 전기화학적 특성)

  • Kim Han-Joo;Son Won-Keun;Hong Ji-Sook;Kim Tae-Il;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.59-63
    • /
    • 2006
  • The study is coated tin(IV) oxide coated on the titanium substrate electrodes by electrodepositon and dip-coating method and studied about that physical and electrochemical characterization by coating methods. After titanium substrate is etched in HCl, electrodespotion is coated $SnCl_2{\cdot}2H_2O$ in nitrate solution by pulse technique, dip-coating method is also used $SnCl_2{\cdot}2H_2O$ in 1;1V% HCl and coated by dipping and annealing process. tin(IV) oxide coated on titanium substrate electrodes by two coating methods are studied x-ray diffraction (XRD), scanning electron microscopy (SEM) to compare physical characterization of electrode and potential window by cyclic voltammetry (CV) to observe electrochemical characterization.

A Study on catalyst-coated ceramic filter for diesel engine exhaust-gas treatment (디젤엔진 배가스 처리를 위한 세라믹 필터 촉매코팅에 관한 연구)

  • Choi, Sun-Hee;Ku, Kuk-Hae;Jung, Deok-Young;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.7 no.1
    • /
    • pp.65-74
    • /
    • 2001
  • Modified dip-coating method 8.3 times shorten in solution volume-coated and 83.3 times in coating time than existing dip-coating method. Coating weight increased nearly 2~3 times. So modified dip-coating method is evaluated that it is economic and has a efficiency. When we make an experiment in coated $LaCoO_3$ on ceramic monolith in modified dip-coating method which use 2 coating applications with relative viscosity $0.006202kg{\cdot}m/sec$, it showed a superior reaction at 88.56mg per ceramic unit gram in NO-CO reaction(optimum coating amount). When we make an experiment in the same size of ceramic filter cell with different conditions 100, 200cell per square inch, the result in low temperature($200^{\circ}C{\sim}350^{\circ}C$), 200cell3 per square inch is 6~23% higher in NO reduction and 11% in CO oxidation than 100cell per square inch. It is because the more the number of cells in the ceramic filter increase, the more catalytic surface area is expanded.

  • PDF

Gas Permeation of Y2O3-SiC Composite Membrane

  • Song, Daheoi;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.234-236
    • /
    • 2015
  • $Y_2O_3$-SiC composite membrane was dip-coated using $Y_2O_3$ sol solution; this membrane was compared with a non- coated one. Each membrane was characterized by XRD, FE-SEM and BET techniques. Hydrogen and CO permeation were tested with self-manufactured Sievert's type equipment. $Y_2O_3$ coating was enhanced for the selectivity of the membrane ($H_2$ versus CO). The hydrogen permeation was measured at 1 bar with increasing temperatures. In case of the coated membrane, hydrogen permeation was found to be $1.24{\times}10^{-7}mol/m^2sPa$ with perm-selectivity of 4.26 at 323 K.

New Corrosion-Resistant Zn-Al-Mg Alloy Hot-Dip Galvanized Steel Sheet

  • Kohei Tokuda;Yasuto Goto;Mamoru Saito;Hiroshi Takebayashi;Takeshi Konishi;Yuto Fukuda;Fumiaki Nakamura;Koji Kawanishi;Kohei Ueda;Hidetoshi Shindo
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.121-130
    • /
    • 2024
  • In recent years, Zn-Al-Mg alloy galvanized steel sheets have been widely used as coated steel sheets to support social capital in the infrastructure field. A feature of Zn-Al-Mg alloy-coated steel sheets is that they provide a better corrosion protection period than Zn-coated steel sheets. In this study, the corrosion resistance of a new Zn-Al-Mg alloy-coated steel sheet was investigated and compared to that of conventional commercially available coated steel sheets. The investigation confirmed that increasing the Mg concentration in the Zn-Al-Mg-coated steel sheet improved corrosion resistance, which was more than 10 times that of the galvanized steel sheet specified in JIS G 3302. The study findings also confirmed that the corrosion resistance reached more than twice that of the coated steel sheet specified in JIS G 3323. If such galvanized steel sheets are applied to social infrastructures that are exposed to severely corrosive environments, the service life of the infrastructure might be extended.

Crashworthiness Evaluation of Bridge Barriers Built with Hot-dip Zinc-aluminium-magnesium Alloy-coated Steel (고내식성 용융합금도금강판 적용 교량난간의 충돌성능 평가)

  • Noh, Myung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.171-176
    • /
    • 2016
  • This paper proposes road safety facilities applying Hot-dip zinc-aluminum-magnesium alloy-coated steel sheets and coils to reduce the loss of function caused by the corrosion of steel in the service state. Vehicle crash simulations and full-scale crash tests were carried out to provide reliable information on evaluating the crash performance with the products of road safety facilities built with hot-dip zinc-aluminum-magnesium alloy-coated steel. From the results of the simulations and full-scale crash tests, the impact behaviors evaluated by the three-dimensional crash simulations considering the strain-rate dependency in a constitutive model were similar to those obtained from the full-scale crash test results. The full-scale crash test results met the crashworthiness evaluation criteria; hence, the proposed bridge barrier in this paper is ready for field applications.

Synthesis and Microstructure Analysis of NiO Catalysts Coated on the FeCrAl Metal Alloy Foam for Hydrogen Production (수소제조를 위한 다공성 FeCrAl 금속 합금 Foam의 NiO 촉매 담지 및 미세구조 분석)

  • Lee, Yu-Jin;An, Geon-Hyoung;Park, Man-Ho;Lee, Chang-Woo;Choi, Sang-Hyun;Jung, Ju-Yong;Jo, Sung-Jong;Lee, Kun-Jae;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.393-400
    • /
    • 2014
  • NiO catalysts were successfully coated onto FeCrAl metal alloy foam as a catalyst support via a dip-coating method. To demonstrate the optimum amount of NiO catalyst on the FeCrAl metal alloy foam, the molar concentration of the Ni precursor in a coating solution was controlled, with five different amounts of 0.4 M, 0.6 M, 0.8 M, 1.0 M, and 1.2 M for a dip-coating process. The structural, morphological, and chemical bonding properties of the NiO-catalyst-coated FeCrAl metal alloy foam samples were assessed by means of field-emission scanning electron microscopy(FESEM), scanning electron microscopy-energy dispersive spectroscopy(SEM-EDS), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). In particular, when the FeCrAl metal alloy foam samples were coated using a coating solution with a 0.8 M Ni precursor, well-dispersed NiO catalysts on the FeCrAl metal alloy foam compared to the other samples were confirmed. Also, the XPS results exhibited the chemical bonding states of the NiO phases and the FeCrAl metal alloy foam. The results showed that a dip-coating method is one of best ways to coat well-dispersed NiO catalysts onto FeCrAl metal alloy foam.

Fabrication Of Thin Electrolyte Layer For Solid Oxide Fuel Cell by Vacuum Slurry Dip-coating Process (진공 슬러리 담금 코팅 공정에 의한 고체 산화물 연료전지용 박막 전해질막 제조에 관한 연구)

  • Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Shin, Dong-Tyul;Song, Rak-Hyun;Kim, Sung-Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.204-211
    • /
    • 2006
  • The electrolyte in the solid oxide fuel cell must be dense enough to avoid gas leakage and thin enough to reduce the ohmic resistance. In order to manufacture the thin and dense electrolyte layer, 8 mol% $Y_2O_3$ stabilized-$ZrO_2$ (8YSZ) electrolyte layers were coated on the porous tubular substrate by the novel vacuum slurry dip-coating process. The effects of the slurry concentration, presintering temperature, and vacuum pressure on the thickness and the gas permeability of the coated electrolyte layers have been examined in the vacuum slurry coating process. The vacuum-coated electrolyte layers showed very low gas permeabilities and had thin thicknesses. The single cell with the vacuum-coated electrolyte layer indicated a good performance of $495\;mW/cm^2$, 0.7 V at $700^{\circ}C$. The experimental results show that the vacuum dip-coating process is an effective method to fabricate dense thin film on the porous tubular substrate.