• 제목/요약/키워드: Dip and electrochemical treatment

검색결과 4건 처리시간 0.019초

304 스테인리스강의 착색 처리 조건이 표면 특성에 미치는 영향 (The Effect of Coloring Condition on the Surface Characteristic of 304 Stainless Steel)

  • 김기호
    • 한국표면공학회지
    • /
    • 제44권5호
    • /
    • pp.220-225
    • /
    • 2011
  • 304 stainless steel plate was colored by hot dip and electrochemical treatment in a solution containing sulphuric and chromic acids. In the process, treatment variables such as operating time and methode were changed. The surface characteristics that changed by the treatment of the samples such as surface composition, oxide film thickness, color, surface roughness and reflectivity were studied. Surface composition was varied as follows. Fe was decreased, but Cr and O were increased. Ni was increased until 20 min, but reveals decreasing tendency as time passed after that. These means the surface film becomes chrome rich oxide phase as the treatment times increase. The thickness of film was about 220 nm at 30 min by dip treatment and it reduced as the treatment times increased. On the other hand, the thickness was about 150 nm at 10 min by electrochemical method and it doesn't increased with time. Surface color changed from metallic white of the base plate to gray, black, red, and green-blue, gradually, as the treating time increased. The reflectivity of colored surface measured by UVVIS-NIR spectrophotometer was reduced from max 38% of basis metal to min 3.5%.

Evaluation on the Corrosion Resistance of Three Types of Galvanizing Steels in 1% H2SO4 Solution

  • Moon, Kyung-Man;Lee, Sung-Yul;Lee, Myeong-Hoon;Jeong, Jae-Hyun;Baek, Tae-Sil
    • 한국표면공학회지
    • /
    • 제49권3호
    • /
    • pp.245-251
    • /
    • 2016
  • Galvanizing method has been extensively used to the numerous constructional steels such as a guard rail of high way, various types of structural steel for ship building and various types of steels for the industrial fields etc.. However, the galvanized structures would be inevitably corroded rapidly with increasing exposed time because an acid rain due to environmental contamination has been much dropped more and more. Therefore, it has been made an effort to improve the corrosion resistance of the galvanizing film through various methods. In this study, comparison evaluation on the corrosion resistance of three types of the samples, that is, the hot dip galvanizing with pure zinc(GI), the hot dip galvanizing of alloy bath with zinc and aluminum(GL) and the pure zinc galvanizing steel immersed again to chromate treatment bath(Chro.)were investigated using electrochemical methods in 1% $H_2SO_4$ solution. The Chro. and GI samples exhibited the highest and lowest corrosion resistance respectively in 1% $H_2SO_4$ solution, however, the GI sample revealed the highest impedance at 0.01 Hz due to its high resistance polarization caused by corrosion products deposited on the surface, while Chro. sample exhibited the lowest impedance at 0.01 Hz because of little corrosion products on the surface. Consequently, it is suggested that the chromate treated steel has a better corrosion resistance in acid environment compared to pure galvanizing(GI) or galvalume(GL) steels.

Fabrication of 3-Dimensional LiMn2O4 Thin Film

  • Park, Bo-Gun;Ryu, Jea Hyeok;Choi, Won Youl;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권3호
    • /
    • pp.653-656
    • /
    • 2009
  • 3-Dimensionally ordered macroporous $LiMn_2O_4$ thin film was prepared by a sol-gel and dip coating method on Pt/Ti/$SiO_2$/Si substrate. An opal structure consisting of mono dispersed polystyrene beads (300 nm) was used as a template. After solution containing Mn and Li precursors was coated on the template-deposited substrate, the template and organic materials in the precursors was removed by calcination at 400 ${^{\circ}C}$. And then the 3-dimensional $LiMn_2O_4$ thin film with spinel structure was fabricated by heat treatment at 700 ${^{\circ}C}$. The structural and electrochemical property was investigated by XRD, SEM and charge-discharge cycler.

졸-겔법으로 제조된 비정질의 텅스텐 산화물 박막과 황산 전해질 계면에서 일어나는 수소의 층간 반응에 대한 전기화학적 특성 (Electrochemical Characteristic on Hydrogen Intercalation into the Interface between Electrolyte of the 0.1N H2SO4and Amorphous Tungsten Oxides Thin Film Fabricated by Sol-Gel Method)

  • 강태혁;민병철;주재백;손태원;조원일
    • 공업화학
    • /
    • 제7권6호
    • /
    • pp.1078-1086
    • /
    • 1996
  • 본 연구에서는 W-IPA(peroxo-polytungstic acid)를 출발 물질로 하는 졸 용액을 ITO(indium tin oxide)가 입혀진 유리판 위에 침적 도포(dip-coating) 방법으로 침적시키고, 이것을 겔화시킨 후에 열처리하여 전기 발색 소자 (electrochromic device, ECD)의 텅스텐 산화물 박막 전극을 만들어 이의 전기화학적인 특성을 고찰하였다. 가장 좋은 전기 화학적 특성을 나타내는 조건은 $2g/10mL(W-IPA/H_2O)$졸 용액에 15회 침적 도포하여 $230{\sim}240^{\circ}C$의 온도로 최종 열처리 한 텅스텐 산화물 박막 전극이었으며, 침적 횟수의 증가에 따라 산화 텅스텐 박막의 두께는 비례하여 증가하였고, 5회 침적 도포 이후에는 1회 침적 도포시 약 $60{\AA}$ 두께로 막이 생성됨을 알 수 있었다. 졸-겔법으로 제조된 텅스텐 산화물 박막 전극은 X-선 회절 분석에 의하여 비정질 구조, 주사 전자 현미경에 의하여 박막 표면은 균일한 것으로 조사되었다. 다중 순환 전류-전위 주사법에 의하여 작성된 전류-전위 곡선에 의하면 순환 횟수가 수백회 이상임에도 불구하고 소 발색은 뚜렷하게 나타났으나, 더욱 많은 순환 횟수에서는 전해질인 황산 수용액 중에서 텅스텐 산화물 박막의 박리 현상이 일어나 소 발색의 전류 밀도는 차츰 감소하였다. 전위 주사 속도를 변화시키면서 순환 전류-전위 주사법에 의하여 작성된 전류-전위 곡선으로부터 구한 전기화학적 특성 값을 이용하여 반응에 참여하는 수소 이온의 확산 계수를 구할 수 있었다.

  • PDF