• Title/Summary/Keyword: Dimethylsulfoxide

Search Result 141, Processing Time 0.025 seconds

In Vitro Enhancement of Microsomal Cytochrome P450-Dependent Monooxygenases by Organic Solvents in Rat Liver

  • Lee, Dong-Wook;Lim, Heung-Bin;Moon, Ja-Young;Park, Ki-Hyun
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.391-398
    • /
    • 1998
  • In vitro effects of acetone, methanol, and dimethylsulfoxide (DMSO) on liver microsomal cytochrome P450 (P450) content, and P450-dependent arylhydrocarbon hydroxylase (AHH) and 7-ethoxycoumarin O-deethylase (ECOD) activities were studied in rats. Acetone at 1% (v/v) enhanced the content ofP450, assayed spectrally in 3-methylcholanethrene (MC)- and ${\beta}-naphthoflavone$ (BNF)-inducible microsomes by 18 and 7%, respectively. Methanol, up to 5% (v/v) applied, also showed enhancement effects on P450 content in liver microsomes from rats treated with phenobarbital (PB), MC, and BNF, as well as uninduced microsomes with similar but low strength. DMSO, however, did not show such enhancing effects at the ranges of the concentrations applied. AHH and ECOD activities in MC-inducible microsomes were also enhanced by acetone at 1%, which was in proportion to the increase in P450 content by the same concentration. However, the P450 content, and AHH and ECOD activities, were decreased by increasing the concentration of acetone. Methanol at the same concentration with acetone also enhanced ECOD activity but not AHH activity in MCinducible microsomes. The enhancing effect of acetone on the enzymes was negligible when the microsomes were pretreated with a specific monoclonal antibody of MC-inducible isozyme. The difference in the effects of these solvents on P450 system might be due to their different properties that cause the P450 active site to be exposed in milieu.

  • PDF

Cyclosporin A Binding Protein Type-19 kDa Peptidyl-Prolyl Cis/Trans Isomerase from Euglena gracilis

  • SONG HYUK-HWAN;PARK SUNG-YONG;LEE CHAN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1047-1053
    • /
    • 2005
  • Cyclosporin A binding protein type-19 kDa peptidyl-prolyl cis/trans isomerase (PPIases, EC 5.2.1.8) of Euglena gracilis was purified and some of its biochemical characters were elucidated. Purification of the PPIase was achieved by employing a series of steps involving ammonium sulfate precipitation, Superdex G-75 gel filtration chromatography, Mono­Q anion and Mono-S cation exchange chromatographies, and Superdex S-200 gel filtration chromatography on FPLC. Purified PPIase had a specific activity of 8,250 units/mg, showing a 27-fold increase compared with that of cell-free extract of Euglena gracilis. The enzyme consisted of a single polypeptide chain with a molecular mass of 19 kDa. It showed high substrate specificity to succinyl-Ala-Ala-Pro-Phe-p-nitroanilide, and $k_{car}/K_{m}$, for this substrate was found to be $61.19{\times}10^5/sec$. The isomer distributions were investigated at an equilibrium of seven different peptide substrates, varying Xaa in Suc-Ala-Xaa-Pro-Phe-p-nitroanilide in dimethylsulfoxide. The cis/trans equilibrium constants were estimated to be from 0.14 (Ile) to 0.63 (Gly), which correspond to $12.00\%\;to\;38.52\%$ of the cis population, respectively, under experimental condition. The enzyme was highly sensitive to the immunosuppressive ligand cyclosporin A, but not to other immunosuppressants such as FK506 and rapamycin. Thus, it appears to belong to the class of cyclophilin.

Vitrification of mouse embryos using the thin plastic strip method

  • Ryu, Eun Kyung;Hur, Yong Soo;Ann, Ji Young;Maeng, Ja Young;Park, Miji;Park, Jeong Hyun;Yoon, Jung;Yoon, San Hyun;Hur, Chang Young;Lee, Won Don;Lim, Jin Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.4
    • /
    • pp.153-160
    • /
    • 2012
  • Objective: The aim of this study was to compare vitrification optimization of mouse embryos using electron microscopy (EM) grid, cryotop, and thin plastic strip (TPS) containers by evaluating developmental competence and apoptosis rates. Methods: Mouse embryos were obtained from superovulated mice. Mouse cleavage-stage, expanded, hatching-stage, and hatched-stage embryos were cryopreserved in EM grid, cryotop, and TPS containers by vitrification in 15% ethylene glycol, 15% dimethylsulfoxide, 10 ${\mu}g/mL$ Ficoll, and 0.65 M sucrose, and 20% serum substitute supplement (SSS) with basal medium, respectively. For the three groups in which the embryos were thawed in the EM grid, cryotop, and TPS containers, the thawing solution consisted of 0.25 M sucrose, 0.125 M sucrose, and 20% SSS with basal medium, respectively. Rates of survival, re-expansion, reaching the hatched stage, and apoptosis after thawing were compared among the three groups. Results: Developmental competence after thawing of vitrified expanded and hatching-stage blastocysts using cryotop and TPS methods were significantly higher than survival using the EM grid (p<0.05). Also, apoptosis positive nuclei rates after thawing of vitrified expanded blastocysts using cryotop and TPS were significantly lower than when using the EM grid (p<0.05). Conclusion: The TPS vitrification method has the advantages of achieving a high developmental ability and effective preservation.

Production and Purification of Trypsin Inhibitor from Streptomyces S-217 (Streptomyces S-217에 의한 Trypsin 저해물질의 생산 및 정제)

  • 류병호;이주화;신동분;김동석
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.534-542
    • /
    • 1992
  • Trypsin inhibtor produced by Streptomyces sp. S-217 was purified by solvent extraction and various column chromatographies. and physico-chemical properties of the inhibitor were investigated. Inhibitor complex was formed for incubation of 10 min. Streptomyces 5-217 showed the highest production of trypsin inhibitor when it was cultivated at $37^{\circ}C$ for 66 hr in the medium containing 2% mannitol & 0.9% peptone, pH 7.0. Trypsin inhibitor was purified by column chromatography and high performance liquid chromatography. Trypsin inhibitor indicated the maxium wavelength at 215 nm and solubilities in water, methanol and dimethyl sulfoxide were 95, 70 and 75%, respectively. The concentration of 50% inhibition ($IC^{50}$) was 15 $\mu$g/ml. The inhibitor was stable on heating at $100^{\circ}C$ for 60 min in pH 5~9 and was more stable in alkaline region than acidic region.

  • PDF

Study on the Solvent Effect in the Coating of Conductive Polythiophene Derivative (용매에 따른 폴리싸이오펜 치환체의 전기전도성에 미치는 영향)

  • Pak, Na-Young;Lee, Seong-Min;Chung, Dae-Won
    • Elastomers and Composites
    • /
    • v.46 no.4
    • /
    • pp.290-294
    • /
    • 2011
  • The surface resistance of poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT/PSS), which has appeared to be one of the most successful conductive polymers, is affected by the solvent. In this paper, pellet-type PEDOT/PSS was suspended in $H_2O$, ethanol (EtOH), ethylene glycol (EG) or dimethylsulfoxide (DMSO), and coated on PET film. The surface resistances of the films made from EG or DMSO suspension were observed to be lower, nearly by 2 orders of magnitude, than that made from $H_2O$ suspension. No significant difference among four kinds of films was observed when the thermal properties and chemical structures were investigated by TGA and XPS, respectively. However, particle size of PEDOT/PSS was in the range of $1-3{\mu}m$ in EG or DMSO, on the other hand, less than $0.1{\mu}m$ in $H_2O$. It is considered that the particle size of PEDOT/PSS in the suspension plays an important role for the surface resistance.

An Efficient Method for Synthesis of PEO-Based Macromonomer and Macroinitiator

  • Kim, Jung-Ahn;Choi, Song-Yee;Kim, Kyung-Min;Go, Da-Hyeon;Jeon, Hee-Jeong;Lee, Jae-Yeol;Park, Hyeong-Soo;Lee, Cheol-Han;Park, Heung-Mok
    • Macromolecular Research
    • /
    • v.15 no.4
    • /
    • pp.337-342
    • /
    • 2007
  • The n-butyllithium-initiated ring-opening polymerization of ethylene oxide, in a mixture of benzene and dimethylsulfoxide (DMSO), between $25-45^{\circ}C$, with potassium tert-butoxide, is a useful and powerful method to control the molecular weight as well as achieve a quantitative chain-end functionalization yield of the resulting polymeric alkoxide via a one pot synthesis. The molecular weight of the product could be controlled by adjusting the ratio of grams of monomer to moles of initiators, such as n-butyllithium ([n-BuLi]) and potassium t-butoxide ([t-BuOK]). The yields for the macromonomer and ${\omega}-brominated$ poly(ethylene oxide) (PEO) were quantitative in relation to the chain-end functionalizations of the polymeric alkoxide formed. The resulting products were characterized by a combination of $^1H-NMR$ spectroscopic and size exclusion chromatographic analyses.

Redox Reaction Mechanisms of Thorium (IV) Complexes with Crown Ethers in Dimethylsulfoxide (디메틸술폭시드용매중에서 Thorium (IV)-Crown Ether 착물의 산화-환원 반응메카니즘)

  • Jung, Hak-Jin;Jung, Oh-Jin;Suh, Hyouck-Choon
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.250-257
    • /
    • 1987
  • The electrical conductances for the thorium (IV) complexes with crown ethers have been measured in DMSO, and water solvents, and the oxidation-reduction reaction mechanisms, electron number and diffusion coefficients in the reversible reduction process have been examined by polarography and cyclic voltammography. The dissociation mole ratio of $Th^{4+}$ and nitrate ion are 1:1 and in aprotic solvent, and 1:4 in protic solvent like as water. The limiting molar conductances of all complexes in aprotic solvent have been found to be in the range of $92.2{\times}159$ $ohm^{-1}cm^2mol^{-1}$. In aprotic solvent, DMSO, the reduction of each complex is reversible by one electron reduction of one step, and the range of diffusion coefficients is obserbed to be $5.83\;10^{-6}{\sim}6.90{\times}10^{-6}$. The complexes which have reduction step were hydrolyzed above at 1.8volt with reference saturated calomel electrode, generating the hydrogen gas. The reaction mechanisms of thorium (IV)-crown ether complexes appear as follows. ${Th_m(IV)L_n(H_2O)_x(NO_3)_{4y}}_=^{DMSO} {\overline{{Th_m(IV)L_n(H_2O)_x(NO_3)_{4y-1}}}^+ + NO_3-$

  • PDF

Voltammetric Studies on Some Thiadiazoles and Their Derivatives

  • Maghraby, A. A. El;Abou-Elenien, G. M.;Rateb, N. M;Abdel-Tawab, H. R.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.54-60
    • /
    • 2009
  • The redox characteristics of 2-arylaldehydehydrazono-3-phenyl-5-substituted-2, 3-dihydro-1, 3, 4-thiadiazoles (1a-h) have been investigated in nonaqueous solvents such as 1, 2-dichloroethane (DCE), dichloromethane (DCM), acetonitrile (AN), Tetrahydrofuran (THF), and dimethylsulfoxide (DMSO) at platinum electrode. Through controlled potential electrolysis, the oxidation and reduction products of the investigated compounds had been separated and indentified. The redox mechanism had been suggested and proved. It had been found that all the investigated compounds were oxidized in two irreversible one-electron processes following the well-known pattern of The EC-mechanism; the first electron loss gives the corresponding cation-radical which is followed by proton removal from the ortho-position in the N-phenyl ring forming the radical. The obtained radical undergoes a second electron uptake from the nitrogen in the N = C group forming the unstable intermediate (di-radical cation) which undergoes ring closure forming the corresponding cation. The formed cation was stabilized in solution through its combination with a perchlorate anion from the medium. On the other hand, these compounds are reduced in a single two-electron process or in a successive two one-electron processes following the well known pattern of the EEC-mechanism according to the nature of the substituent; the first one gives the anion-radical followed by a second electron reduction to give the dianion which is basic enough to abstract protons from the media to saturate the (C = O) bond.

Role of OrfQ in Formation of Light-Harvesting Complex of Rhodobacter sphaeroides under Light-Limiting Photoheterotrophic Conditions

  • LIM, SOO-KYONG;IL HAN LEE;KUN-SOO KIM;JEONG KUG LEE
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.604-612
    • /
    • 1999
  • A puc-deleted cell of Rhodobacter sphaeroides grows with a doubling time longer than 160 h under light-limiting photoheterotrophic (3 Watts [W]/㎡) conditions due to an absence of the peripheral light-harvesting B800-850 complex. A spontaneous fast-growing mutant, R. sphaeroides SK101, was isolated from the puc-deleted cells cultured photoheterotrophically at 3 W/㎡. This mutant grew with an approximately 40-h doubling time. The growth of the mutant, however, was indistinguishable from its parental strain during photoheterotrophic growth at 10 W/㎡ as well as during aerobic growth. The membrane of SK101 grown aerobically did not reveal the presence of any spectral complex, while the amounts of the B875 complex and photosynthetic pigments of SK101 grown anaerobiclly in the dark with dimethylsulfoxide (DMSO) were the same as those of the parental cell. These results indicate that the oxygen control of the photosynthetic complex formation remained unaltered in the mutant. The B875 complex of SK101 under light-limiting conditions was elevated by 20% to 30% compared with that of the parental cell, which reflected the parallel increase of the bacteriochlorophyll and carotenoid contents of the mutant. When the puc was restored in SK101, the B875 complex level remained unchanged, but that of the B800-850 complex increased. The mutated phenotype of SK101 was complemented with orfQ encoding a putative bacteriochlorophyll-mobilizing protein. Accordingly, it is proposed that the mutated OrfQ of SK101 should have an altered affinity towards the assembly factor specific to the most peripheral light-harvesting complex, which could be either the B875 or the B800-850 complex.

  • PDF

Dimethylsulfoxide (DMSO) induces downregulation of heme oxygenase-1 (HO-1) in HL-60 cells: involvement of HO-1 in HL-60 cell differentiation

  • Noh, Eun-Mi;Cho, Dong-Hyu;Lee, Young-Rae;Jeong, Young-Ju;Kim, Jong-Hyeon;Chae, Hee-Suk;Park, Jinny;Jung, Won-Seok;Park, Sung-Joo;Kim, Jong-Suk
    • BMB Reports
    • /
    • v.44 no.11
    • /
    • pp.753-757
    • /
    • 2011
  • Heme oxygenase-1 (HO-1), an inducible enzyme with broad tissue expression, is wel1-regulated in response to hematopoietic stress and preserves vascular homeostasis. We investigated the involvement of HO-1 in HL-60 cell differentiation. Dimethyl sulfoxide (DMSO) completely decreased HO-1 expression in a time-dependent manner, but clearly induced HL-60 cell differentiation, as evidenced by a marked increase in CD11b expression. Interestingly, zinc protoporphyrin (ZnPP), a strong inhibitor of HO-1, induced HL-60 cell differentiation. In contrast, treatment with cobalt protoporphyrin (CoPP), an activator of HO-1, decreased CD11b expression. Additionally, ZnPP down-regulated HO-1 protein expression in HL-60 cells, whereas CoPP induced upregulation. These results suggest that HO-1 might have a negative function in DMSO-induced HL-60 cell differentiation. This study provides the first evidence that HO-1 plays an important role in DMSO-induced HL-60 cell differentiation.