• 제목/요약/키워드: Dimethyl Ether

검색결과 289건 처리시간 0.025초

수소 에너지 밀도가 높은 디메틸에테르(DME) 제조 촉매에 관한 연구 (A Study on the Catalyst for the Synthesis of DME with Hydrogen Energy Density)

  • 장은미;백영순;오영삼
    • 한국수소및신에너지학회논문집
    • /
    • 제19권5호
    • /
    • pp.445-452
    • /
    • 2008
  • DME(Dimethyl ether) Dimethyl Ether (DME) is a new clean fuel and an environmental-benign energy resource. In comparison with other fuels, DME rapidly decomposes into carbon dioxide ($CO_2$) and water in the atmosphere without forming ozone. It can be manufactured from various energy sources including natural gas, coal, biomass and spent plastics. In addition to its environmentally friendly properties, DME is considered as one of the most promising candidates for the substitute of LPG and diesel fuel. In this work, we will be studied to find optimized condition for the catalyst of DME energy manufacture from hydrogen and carbon oxide and its chemical and physical characteristics.

Conversion of Dimethyl Ether to Light Olefins over a Lead-Incorporated SAPO-34 Catalyst with Hierarchical Structure

  • Kang Song;Jeong Hyeon Lim;Young Chan Yoon;Chu Sik Park;Young Ho Kim
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.548-555
    • /
    • 2023
  • SAPO-34 catalysts were modified with polyethylene glycol (PEG) and Pb to improve their catalytic lifetime and selectivity for light olefins in the conversion of dimethyl ether to olefins (DTO). Hierarchical SAPO-34 catalysts and PbAPSO-34 catalysts were synthesized according to changes in the molecular weight of PEG (M.W. = 1000, 2000, 4000) and the molar ratio of Pb/Al (Pb/Al = 0.0015, 0.0025, 0.0035), respectively. By introducing PEG into the SAPO-34 catalyst crystals, an enhanced volume of mesopores and reduced acidity were observed, resulting in improved catalytic performance. Pb was successfully substituted into the SAPO-34 catalyst frameworks, and an increased BET surface area and concentration of acid sites in the PbAPSO-34 catalysts were observed. In particular, the concentrations of the weak acid sites, which induce a mild reaction, were increased compared with the concentrations of strong acid sites. Then, the P2000-Pb(25)APSO-34 catalyst was prepared by simultaneously utilizing the synthesis conditions for the P2000 SAPO-34 and Pb(25)APSO-34 catalysts. The P2000-Pb(25)APSO-34 catalyst showed the best catalytic lifetime (183 min based on DME conversion > 90%), with an approximately 62% improvement compared to that of the unmodified catalyst (113 min).

재배한 무순의 향미성분 (Volatile Flavor Components of Cultivated Radish (Raphanus sativus L.) Sprout)

  • 송미란
    • 한국식품영양학회지
    • /
    • 제14권1호
    • /
    • pp.20-27
    • /
    • 2001
  • 십자화과 식물인 무(Raphanus sativus L.)의 어린싹(무순)이 독특한 향과 맛으로 소비가 증가하고 있는바 그 향기성분을 SDE(simultaneous steam disti-llation/extraction) 법과 P&T(purge and cryogenic trapping)법으로 추출하여 비교, 분석하였다. 향기성분 포집시 SDE법에서는 diethyl ether 및 diethyl ether-pentane mixture(2:1, v/v)를 용매로 사용하고 P&T법에서는 diethyl ether를 사용하였다. GC와 GC-MS를 사용하여 동정한 결과 diethyl ether로 추출한 SDE법에서는 함황화합물(19종, 76.6%)이 주성분이었고, diethyl ether-pentane mixture로 추출한 경우 함황화합물(15종, 44.0%)과 탄화수소류(23종, 23.8%)가 주성분이었으며, P&T법으로 추출할 경우는 탄화수소류(25종, 84.1%)가 주성분이었다. 또한 신선한 무순의 주 향기성분은 hydrocarbon류인 n-heptane, methyl pentane이었으며, 익은 무순의 주 향기성분은 sulfur compound에 속하며 무의 주성분이기도 한 4-methylthio-3-butenyl isothiocyanate, methyl mercaptane, 2,3-dimethyl disulfide 등이었다. SDE법 보다 P&T법에 의해 추출할 경우 향기성분의 종류와 상대적인 양은 적어 분리능은 떨어지는 편이나 저분자 휘발성 물질은 오히려 더 많이 검출되어 추출방법에 따라 포집되는 향기성분의 종류와 양에 차이가 있었다.

  • PDF

MODELLING STUDY OF THE EFFECT OF CHEMICAL ADDITIVES ON SOOT PRECURSORS REDUCTION

  • Park, J.K.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.501-508
    • /
    • 2006
  • The effect of chemical additives, such as dimethyl ether(DME), ethanol, carbon disulfide on the soot formation were examined numerically. ill this study, the Frenklach soot mechanism was used as a base mechanism to predict the soot formation in the ethane flame. The combination of Westbrook's DME mechanism, Marinov's ethanol mechanism, and chemical kinetic mechanism for hydrogen sulfide and carbon disulfide flames was made with the base mechanism because the DME, ethanol, $CS_2$ additives are added into the ethane fuel. CHEMKIN code was used as a numerical analysis software to simulate the effect of chemical additives on reduction of the polycyclic aromatic hydrocarbons(PAH's) which are soot precursors. From the numerical results it is observed that addition of DME, ethanol and $CS_2$ into ethane fuel can reduce PAH species significantly. That means theses additives can reduce soot formation significantly. Results also strongly suggest suppression of soot formation by these additives to be mainly a chemical effect. Hand OH radicals may be the key species to the reduction of PAH species for additives.

DME연료 디젤 엔진에서의 연소특성 해석 (Numerical Studies on Combustion Characteristics of Diesel Engines using DME Fuel)

  • 유용욱;이정원;김용모
    • 한국자동차공학회논문집
    • /
    • 제16권2호
    • /
    • pp.143-149
    • /
    • 2008
  • The present study is mainly motivated to investigate the vaporization, auto-ignition and spray combustion processes in DI diesel engine using DME and n-heptane. In order to realistically simulate the dimethyl ether (DME) spray dynamics and vaporization characteristics in high-pressure and high-temperature environment, the high-pressure vaporization model has been utilized. The interaction between chemistry and turbulence is treated by employing the Representative Interaction Flamelet (RIF) model. The detailed chemistry of 336 elementary steps and 78 chemical species is used for the DME/air reaction. Based on numerical results, the detailed discussion has been made for the distinctly different combustion characteristics of DME diesel engine in term of vaporization, ignition delay, pollutant formation, and heat release rate.

고온 고압하에서의 DME 연료 분무 및 증발 특성 (Spray and Evaporation Characteristics of DME fuel at the High pressure and temperature)

  • 김형준;서현규;이창식
    • 한국분무공학회지
    • /
    • 제12권2호
    • /
    • pp.101-107
    • /
    • 2007
  • The purpose of this study is to analyze spray and evaporation characteristics of DME fuel at the high pressure and temperature. For the numerical analysis of dimethyl ether(DME) fuel spray characteristics, hybrid breakup model was applied to the DME spray and its breakup process. In order to obtain experimental results for comparison with the predicted ones, the visualization of the spray evolution process was executed by using a Nd:YAG laser. Also, the numerical investigation was conducted by the two hybrid models for primary and secondary breakup of the DME spray. The primary breakup model was used the Kelvin-Helmholtz(KH) breakup model. In the secondary breakup process, Rayleigh-Taylor(RT) and Drop Deformation Breakup(DDB) model was applied. The results of this study provide the macroscopic characteristics of the spray such as spray tip penetration and cone angle, and prediction accuracy of the two hybrid model.

  • PDF

Combustion and Emission Characteristics of Diesel Engine by Mixing DME and Bunker Oil

  • Ryu, Younghyun;Dan, Tomohisa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권7호
    • /
    • pp.885-893
    • /
    • 2012
  • DME (Dimethyl ether) is regarded as one of the candidates of alternative fuels for diesel engine, because of its higher cetane number suitable for a compression ignition engine. Also, DME is a simple chemical structure, colorless gas that is easily liquefied and transported. On the other hand, Bunker oil (JIS C heavy oil) has long been used as a basic fuel in marine diesel engines and is the lowest grade fuel oil. In this study, the combustion and emission characteristics were measured experimentally in the direct injection type diesel engine operated with DME and Bunker oil mixed fuel. From our experimental results, it is induced that DME and Bunker oil blended fuel would be an effective fuel which can reduces the concentration of harmful matter in exhaust gases.

Effect of Poly(ethylene glycol) dimethyl ether Plasticizer on Ionic Conductivity of Cross-Linked Poly[siloxane-g-oligo(ethylene oxide)] Solid Polymer Electrolytes

  • Kang, Yongku;Seo, Yeon-Ho;Kim, Dong-Wook;Lee, Chang-Jin
    • Macromolecular Research
    • /
    • 제12권5호
    • /
    • pp.431-436
    • /
    • 2004
  • Cross-linked network solid polymer electrolytes were prepared by means of in situ hydrosilylation between poly[hydromethylslioxane-g-oligo(ethylene oxide)] and diallyl or triallyl group-containing poly(ethylene glycols). The conductivities of the resulting polymer electrolytes were greatly enhanced upon the addition of poly(ethylene glycol) dimethyl ether (PEGDME) as an ion-conducting plasticizer. Conductivities of the cross-linked polymer electrolytes were more dependent on the molecular weight of PEGDME than on the cross-linkers. The maximum conductivity was found to be 5.6${\times}$10$\^$-4/ S/cm at 30$^{\circ}C$ for the sample containing 75 wt% of PEGDME (M$\_$n/ =400). These electrolytes exhibited electrochemical stability up to 4.5 V against the lithium reference electrode. We observed reversible electrochemical plating/stripping of lithium on the nickel electrode.