• Title/Summary/Keyword: Dimensionless condensate film

Search Result 2, Processing Time 0.016 seconds

The Heat Transfer Characteristics of Rotating Heat Pipe with Tapered Condensers in the both Sides of Evaporator (증발부 양단에 테이퍼 응축기를 가진 회전형 히트파이프의 전열 특성)

  • 이기우;이영수;장기창;장영석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-25
    • /
    • 1996
  • The purpose of this paper is to study heat transfer characteristics of rotating heat pipe with tapered condensers by numerical analysis and experimental method. An experimental investigation has been carried out on thermal resistance between condenser wall and vapor region fo the rotating heat pipe with various taper 0, 1/11.4, 1/38. Heat transfer characteristics by analytical study were applied to describe various Nu numbers on the base of dimensionless condensate film, Re and Pr numbers in both condensers. Comparison between calculated results and experimental data showed qualitatively good agreement and the numerical analysis of this study can be utilized to predict the performance of a rotating heat pipe. The thermal resistance can be decreased by increasing the revolution per minute. Regardless of various dimensionless condensate film, Nu number was largely influenced by saturation temperatures of working fluid.

  • PDF

A Study on the Heat Transfer Characteristics in the Composite Heat Pipe as Modeling Turbine Rotor (터어빈 회전차를 모델로하는 복합 히이트파이프의 전열특성에 대한 연구)

  • Kwon, Sun-Sok;Jang, Yeong-Suc;Yoo, Byung-Wook
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.120-132
    • /
    • 1993
  • The purpose of this research is to study the characteristics of heat transfer in composite rotary heat pipe as modeled turbine rotating by a finite element analysis and experiment. Nu number, Re number, Pr number and dimensionless condensate layer thickness by thermal input and revolutions per minute were given as analysis factors. The comparison between calculated and experimental data showed similar tendency. Therefore the analysis method may be useful to predict the performance of composite heat pipe. The resistance on heat pipe showed the best effect of heat transfer by film condensation, by decreasing film condensation, the heat transfer rate from condenser was increased rapidly. The dimensionless condensate layer thickness according to Re number at given Pr number showed constant values, the dimensionless condensate layer thickness is proportionate to the square root of inverse of revolution number per minute. In this study Nu=A$({\delta}({\omega}/v)^{-1/2}Re^B)$ is used to the convection heat transfer coefficient and A=0.963, B=0.5025 were obtained as analysis predicts.

  • PDF