• Title/Summary/Keyword: Dimensional measurement accuracy

Search Result 348, Processing Time 0.035 seconds

Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique

  • Kim, Jae-Hong;Kim, Ki-Baek;Kim, Woong-Chul;Kim, Ji-Hwan;Kim, Hae-Young
    • The korean journal of orthodontics
    • /
    • v.44 no.2
    • /
    • pp.69-76
    • /
    • 2014
  • Objective: This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Methods: Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of interexaminer and inter-method variability. Results: The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. Conclusions: The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.

Video-based 3-dimensional tracking system (영상을 이용한 3차원 위치 추적 시스템 개발1)

  • 박경수;반영환;이안재;임창주
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.160-165
    • /
    • 1996
  • This paper presents the development of video-based 3-dimensional tracking system. Measurement of human motion is important in the application of ergonomics. The system uses advanced direct video measurement technology. Passive retro-reflecting markers are attached to a subject and movements of markers are observed by two CCD cameras. Infrared light emitted near the CCD cameras is reflected by the markers and is detected by the cameras. The image ae captured by Samsung MVBO2 board and the center of markers is calculated by DSP program. The position of markers are transferred from MVB02 board to the computer through AT bus. The computer then tracks the position of each marker and saves the data. This system has dynamic accuracy with 1% error and the sampling rate to 6-10 Hz, and can analyse the trajectory and speed of the marker. The results of this study can be used for operators motion analysis, task analysis, and hand movement characteristic analysis.

  • PDF

Noncontact Type Three Dimensional Profile Measurement for CAD Modeling of Sculptured Surface (자유곡면의 CAD 모델링을 위한 비접촉식 삼차원 형상측정)

  • Park, H.G.;Park, Y.B.;Kim, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.5-14
    • /
    • 1995
  • An optical measurement method of three dimensional surface profiles which is named the slit beam projection is suggested and practically implemented. This method is intended especially for noncontact and fast digitization of sculptured surfaces for CAD modeling and die manufacturing. Its basic principles are based on geometric optics. Deatiled optical principles and an sub-pixel image processing technique to enhance the measuring resolutions are described in this study. The measuring performances of the slit beam projection are presented and discussed to demonstrate that an actual measuring accuracy of below .+-. 0.2mm can be achived over the whole measuring range(500mm*300mm*200mm)

  • PDF

Application of Reverse Engineering System for Improvement of Curl Distortion in Stereolithography Process (광조형 공정시 휨에 의한 변형을 개선하기 위한 역설계 시스템의 적용)

  • Che, Woo-Seong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.7-13
    • /
    • 2009
  • The slender device(long length and thin width) manufactured by stereolithography process suffers from large curl distortion. This paper adapts two control parameters such as a critical exposure and a penetration depth. The measurement of the test parts dimension are carried out by reverse engineering method with the optical 3-dimensional measurement equipment. We investigate how each parameter contributes to the part accuracy and estimates the optimal set of parameters which minimizes the dimensional error of the test parts. Finally, As being an the RAM slot as being an example of the slender device, the RAM slot is made with the optimal values of control parameter and the results are investigated

  • PDF

3 Dimensional Vibration Measurement of Structures Using GPS Carrier Phase (GPS 반송파를 이용한 구조물의 3차원 진동측정)

  • Suh, Dae-Wan;Lee, Young-Jae;Park, Hoon-Cheol;Yoon, Kwang-Joon;Jee, Gyu-In;Park, Chan-Gook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1303-1310
    • /
    • 2000
  • GPS carrier phase is supposed to provide the tool for the most precise 3 dimensional positioning information. The FAST, an OTF technique, has been developed by the GPS System Laboratory of Konkuk University, and has been shown several millimeter level accuracy in root-mean-square sense. This OTF's high precision positioning capability provides an adequate tool of low frequency vibration monitoring of large structures. In this paper, the possibility of vibration measurement of a cantilever beam using FAST has been tested, which is supposed to be extended to more practical applications. The results of the experiment have been compared with those by a strain gage and laser sensor.

  • PDF

Development of Pre-Position device for CV Joint Measurement System (CV Joint 측정시스템용 Pre-Position 장치 개발에 관한 연구)

  • Kim D. W.;Part K. S.;Kim B. J.;Moon Y. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.156-159
    • /
    • 2005
  • The outer race of CV(constant velocity) joint is an important load-supporting automotive put that transmits torque between the transmission gear box and driving wheel. The outer race is difficult to forge because its shape is very complicated and the required dimensional tolerances are very small. To guarantee the dimensional accuracy of the forged CV Joint, the quick and precise measurement is required to increase the inspection speed of forged products. Therefore in this study, PP(Pre-Position) Device to decrease the inspection time of measuring system has been developed to cope with forging cycle time. The measured inspection time confirms that the PPD is very effective in decreasing inspection time.

  • PDF

Ultra High-speed 3-dimensional Profilometry Using a Laser Grating Projection System

  • Park, Yoon-Chang;Ahn, Seong-Joon;Kang, Moon-Ho;Kwon, Young-Chul;Ahn, Seung-Joon
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.464-467
    • /
    • 2009
  • The grating projection method with phase-shifting technique is very useful in measuring the 3-dimensional (3D) shape with high accuracy and speed. In this work, we have developed an ultra high-speed digital laser grating projection system using a high-power laser diode and a highsensitivity CMOS camera. With our system, the optical measurement required to find out the profile of a 3D object could be carried out within 2.6 ms, which is a significant ($\sim$10 times) improvement compared with those of the previous studies.

LAND SLIDE DISPLACEMENT DETECTION USING TIME SERIES DIGITAL SURFACE MODEL ACQUIRED BY A TERRESTRIAL LASER SCANNER

  • Jeong, Jong-Hyeok;Takagi, Masataka
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.567-569
    • /
    • 2006
  • Recently, the terrestrial laser scanner is considered as useful measurement equipment for acquiring a three-dimensional data. In this study, a terrestrial laser scanner which has +/- 2.5cm accuracy is examined whether the terrestrial laser scanner is reliable to present the tendency of landslide movement. The test area is covered by protection blocks, and they are being moved by landslide movement. Landslide movement was detected by measuring the movement of protection blocks. Totally three scenes of test area were acquired during 2004 and 2006. The three scenes of the protection blocks were registered in global coordinate system, then the landslide movement was investigated. The landslide movement detected in the three scenes was evaluated by comparing with landslide movement measured by a total station. Although the measurement accuracy of landslide using the terrestrial laser scanner was worse than the total station, the scanning data showed the tendency of landslide movement of the test area.

  • PDF

The enhancement of 3-dimensional positioning accuracy by measuring error factors for CNC machine tools (공작기계의 오차요소 측정을 통한 3차원 위치정밀도 향상)

  • 손진욱;서석환;정세용;이응석;위현곤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.260-265
    • /
    • 1994
  • Efforts have been devoted to developing rapid and accurate methods for measuring the errors of machine tools. The method os measurement and calibration of machine tool errors should be general and efficient. The objective of this study is to show in detail the full sequence from the measurement of errors factors to the verification of the positioning accuracy after compensation for the volumetric error. In this paper, we described the steps in measuring the volumetric error parameters, a general error model composed of error parameters, temperature, and the desired position. The validity of the error calibration methods proposed in this paper was tested using a vertical 3-axis CNC machine with a laser interferometer and a ball bar.

  • PDF

A Study on 2-Dimensional Sound Source Tracking System III - mainly on digital signal processing - (2차원적 음원추적에 관한 연구III - 디지털 신호처리를 중심으로 -)

  • 문성배;전승환
    • Journal of the Korean Institute of Navigation
    • /
    • v.24 no.5
    • /
    • pp.443-450
    • /
    • 2000
  • Before some experiments were carried out with analog bandpass filter which used for filtering the noise included in sound source signal. And this filter was constituted by condenser, register and operational amplifier. Hut these elements made the phase characteristics to differentiate in each sensing channel and cause a little of measurement error. We made new measurement system that was substituted digital filter for the analog filter in order to develop the optimal system which could find the time delay between each sensors with high accuracy. This paper describes the new system's constitution and the function of each parts. Specially three digital filters were designed and applied to the digital signal processing Part. And a series of experiments were carried out with the source's distance 9.53meters and the random bearing interval within the limits of $0^{\circ}$ ~ $180^{\circ}$. As a result, we have recognized that the accuracy of measurements were differentiated by the methods what kind of digital filter were adopted. And we have confirmed the facts that IIR LPF was suitable for sound source's bearing measurement and FIR LPF reduced the range measurement error.

  • PDF