• Title/Summary/Keyword: Dimensional measurement accuracy

Search Result 349, Processing Time 0.033 seconds

The Discontinuities Extraction and Analysis of Rock Slope by 3D Image (3차원영상에 의한 암반사면의 불연속면 추출 및 분석)

  • 강준묵;김위현;박준규
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.163-167
    • /
    • 2003
  • As digital photogrammetry can acquire much three-dimensional data quickly and exactly in equal accuracy, and it has advantage that can use this in modelling, it's practical use possibility is increased in various field by collection method of data for GIS. In this study, it was intended to create 3D image that has coordinate system, and use in acquisition of position information for object. And, it was applied to discontinuities extraction and measurement of rock slope for practical use of three-dimensional image and examination of measurement accuracy. Through this, it is inspected the possibility of three-dimensional image creation and the acquisition of space information.

  • PDF

Manikin Model Study on Reproducibility and Accuracy of Maxillofacial Measurements Determined by Stereocamera: Comparative Study of Direct Anthropometry, Digitizer and Stereophotogrammetery (스테레오 카메라를 이용한 안면부 측정의 재현성과 정확도에 대한 마네킨을 이용한 연구: 직접 인체계측, Digitizer, Stereophotogrammetry의 비교 연구)

  • Jeoung, Youn-Wook;Yang, Ji-Woong;Chung, Kwang;Kook, Min-Suk;Oh, Hee-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.1
    • /
    • pp.17-25
    • /
    • 2012
  • Purpose: Recently, a three dimensional approach to hard and soft tissues of the maxillofacial area has been widely used. This study was to evaluate the reproducibility and accuracy of a stereocamera compared to actual measurement methods using a digital caliper and digitizer. Methods: The stereoscopies of 7 head dummies with different sizes and shapes were obtained using a Di3D system (Dimensional Imaging, Glasgow, UK) after marking reference points on facial areas. From the obtained stereoscopy, 10 measurements representing the width, height and depth of each of the facial sections of the dummy were measured twice using a three dimensional reverse engineering software program (RapidForm$^{TM}$ 2006, Inus, Seoul, Korea). The x, y, and z coordinates of each of the three dimensional measurements were obtained and distances between two points were calculated. All procedures were repeated twice. The actual measurement method was performed twice, directly on dummies, using a digital caliper and values were compared with the previously determined values. Results: The results were as follows. In the ANOVA analysis, there were no significant statistical differences among the three measurement methods. In the Bonferroni analysis, with adjustments applied for multiple comparisons, there was no difference between actual measurement methods using a digitizer and a digital caliper. However, there was some difference between using a stereocamera and actual measurement methods using a digitizer and a digital caliper in values of $Ex_{Rt}-Ex_{Lt}$, $En_{Rt}-En_{Lt}$, $Ala_{Rt}-Ala_{Lt}$, $Ch_{Rt}-Ch_{Lt}$, G-Pg', $Ala_{Rt}$-Prn, $Ala_{Rt}$-Prn. The mean value for technical error in measurement (TEM) in Di3D (0.98 mm) was slightly higher than for a digital caliper (0.17 mm) and a digitizer (0.30 mm). In an intraclass correlation coefficient (ICC) there were no significant differences among the three measurement methods, but the Di3D system with the stereocamera showed relatively lower reproducibility compared to actual measurement methods using a digitizer and a digital caliper. Conclusion: These results indicate that some complementary measures may be needed to improve accuracy and reproducibility in the Di3D system with stereocamera.

Breast Type Classification of Breast Augmented Patients Using Photogrammetric Ratio Measurements(PRM) (유방확대 수술환자 사진의 비율 측정치를 이용한 유방유형 분류)

  • Yi, Kyong-Hwa;Sohn, Boo-hyun
    • Journal of Fashion Business
    • /
    • v.21 no.2
    • /
    • pp.61-77
    • /
    • 2017
  • Although three-dimensional measurement systems for the human body have been studied, there is still an error between the measurements by the two-dimensional measurement method and the three-dimensional scanning method. Especially, in the case of the breast, the outline is not clear. The breast is made up of subcutaneous fat and mammary gland tissue, and it is easy to deform, making it difficult to grasp the exact shape. It is also more difficult to measure photogrammetry or three-dimensional measurement because it is difficult to obtain subjects because of the shame they are reluctant to expose. In this study, the angle and length of the line connecting the measurement points of the breast detail measurement items were compared with the unchanged measurement items such as breast width and center front length using the frontal and lateral photographs taken before and after breast enlargement surgery. The results of the study are as follows. The types of breast before and after surgery were classified into two groups and showed high accuracy rate. Therefore, it was possible to classify the breast type using the frontal and lateral views of the breast, and it was found that The PRM method can distinguish the characteristics of the breast type. Therefore, it can be useful for classifying and discriminating breast types.

Comparative Analysis of Accuracy between Computerized Tomography and Cephalogram for 3-Dimensional Measurement of Maxillofacial Structure (악안면 3차원 계측시 컴퓨터 단층촬영과 두부 방사선 규격사진의 정확성 비교 분석)

  • Paek, Jong-Su;Song, Jae-Chul;Lee, Hee-Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.123-137
    • /
    • 2001
  • Background: The purpose of this study is to evaluate the accuracy of measurements obtained from 3-dimensional computerized tomography and 3-dimensional cephalogram constructed by using the frontal and lateral cephalogram of six human dry skulls. Materials and Methods: After CT scans and each cephalograms were taken, 3-dimensional coordinates (X, Y, Z) of landmarks were obtained using computer programs. In this study, the accuracy of both methods were determined by means of 14 linear measurements compare with caliper measurements. Results: The standard deviation of landmarks of 3-dimensional CT and 3-dimensional cephalogram were 0.23 mm, and 0.30 mm in X axis, 0.27 mm and 0.25 mm in Y axis, and 0.27 mm and 0.31 mm in Z axis. In both methods, the standard deviation were less than 0.5 mm in all landmarks, and the most of landmarks showed less than 1 mm in range. Concerning the accuracy, the mean difference between 3-dimensional CT and manual measurements was 0.33 mm, and 1.13 mm between 3-dimensional cephalogram and manual measurements. The distance between RGo and LGo showed the largest difference (2.03 mm). There were highly significant, and large correlation with manual measurements in both methods (p<0.01). Conclusion: It is concluded that closeness of repeated measures to each skulls reveal the precision of both methods. Computerized tomography and cephalogram for 3-dimensional measurement of maxillofacial structure are equivalent in quality to caliper measurements.

  • PDF

Piezoelectric 6-dimensional accelerometer cross coupling compensation algorithm based on two-stage calibration

  • Dengzhuo Zhang;Min Li;Tongbao Zhu;Lan Qin;Jingcheng Liu;Jun Liu
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.101-109
    • /
    • 2023
  • In order to improve the measurement accuracy of the 6-dimensional accelerometer, the cross coupling compensation method of the accelerometer needs to be studied. In this paper, the non-linear error caused by cross coupling of piezoelectric six-dimensional accelerometer is compensated online. The cross coupling filter is obtained by analyzing the cross coupling principle of a piezoelectric six-dimensional accelerometer. Linear and non-linear fitting methods are designed. A two-level calibration hybrid compensation algorithm is proposed. An experimental prototype of a piezoelectric six-dimensional accelerometer is fabricated. Calibration and test experiments of accelerometer were carried out. The measured results show that the average non-linearity of the proposed algorithm is 2.2628% lower than that of the least square method, the solution time is 0.019382 seconds, and the proposed algorithm can realize the real-time measurement in six dimensions while improving the measurement accuracy. The proposed algorithm combines real-time and high precision. The research results provide theoretical and technical support for the calibration method and online compensation technology of the 6-dimensional accelerometer.

Acquisition Model for 3D Shape Measurement Data

  • Park, Jong-Sik;Jang, Wang-Jin;Lee, Seong-Beom;Park, Chan-Seok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2008
  • The demand for three-dimensional (3D) shape measurements is increasing in a variety of fields, including the manufacture of molds and dies. The most popular technology for 3D shape measurement is the coordinate measuring machine (CMM) with a contact trigger probe. Although a CMM provides a high degree of accuracy, it is inefficient due to its long measuring time. It also has difficulty measuring soft objects that can be deformed by the touch of the contact probe. In addition, a CMM cannot digitize areas that are difficult to reach, and cannot capture very minute details on the surface of complex parts. For these reasons, optical non-contact measurement techniques are receiving more attention since they eliminate most of the problems associated with contact methods. Laser scanning is emerging as one of the more promising non-contact measurement techniques. This paper describes various acquisition considerations for laser scanning, including the accuracy of the 3D scan data, which depends on the charge-coupled device (CCD) gain and noise. The CCD gain and noise of a 3D laser scanner are varied while keeping the other conditions constant, and the measurement results are compared to the dimensions of a standard model. The experimental results show that a considerable time savings and an optimum degree of accuracy are possible by selecting the proper CCD gain and noise.

A Study of Three-dimensional evaluation of the accuracy of resin provisional restorations fabricated with the DLP printer (DLP 프린터로 제작된 레진 임시수복물의 3차원적 정확도 평가)

  • Kang, Wol;Lee, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.1
    • /
    • pp.35-41
    • /
    • 2020
  • Purpose: The purpose of this study was to evaluate the accuracy of the DLP 3D printer by conducting 3-dimensional assesment of resin provisional restorations. Methods: The first premolar of the maxillary was prepared for the abutment. The abutment was scanned by using a scanner. The provisional restoration was designed by using CAD software. A total of 16 resin provisional restorations were produced using ZD200 and Veltz DLP 3D printer. Scanning was done of resin provisional restorations and 3-dimensional measurement was conducted for accuracy. The mean (SD) of RMS was reported for each group. Independent t-test was used to assess the statistical significance of the results. All analyses were done using SPSS 22.0. Results: The mean ± SD of RMS value for the accuracy of the resin provisional restorations that was fabricated by using ZD200 and Veltz DLP 3D printer were 50.85.±4.64㎛ and 70.33±6.31㎛. Independent t-test showed significant differences between groups(p<0.001). Conclusion: The resin provisional restorations made with DLP 3D printers showed clinically acceptable accuracy.

A Study on the System of the Precision Dimensional Measurements for Molded Product Carbon Materials (탄소재 성형품에 대한 정밀 치수 검사 시스템에 관한 연구)

  • Kim, Dae-Nyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.2
    • /
    • pp.37-42
    • /
    • 2016
  • This paper proposes a method to develop a high-precision dimension measurement system using a linear variable differential transformer sensor. The Dimension targets for measurement is carbon material vanes of key element in the rotating parts within vehicle circulating pump. Data acquisition system for dimension measurement is designed using the NI Compact RIO. And the program applying the dimension measurement algorithm is built using NI LabVIEW. The dimension measuring program is composed of a FPGA program, Real Time program and Host program. The method of the experiment compares master vane with target vane for measure the length of the carbon material vane. The experimental results confirmed the usefulness of the accuracy within ${\pm}4um$.

Point Cloud Measurement Using Improved Variance Focus Measure Operator

  • Yeni Li;Liang Hou;Yun Chen;Shaoqi Huang
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.170-182
    • /
    • 2024
  • The dimensional accuracy and consistency of a dual oil circuit centrifugal fuel nozzle are important for fuel distribution and combustion efficiency in an engine combustion chamber. A point cloud measurement method was proposed to solve the geometric accuracy detection problem for the fuel nozzle. An improved variance focus measure operator was used to extract the depth point cloud. Compared with other traditional sharpness evaluation functions, the improved operator can generate the best evaluation curve, and has the least noise and the shortest calculation time. The experimental results of point cloud slicing measurement show that the best window size is 24 × 24 pixels. In the height measurement experiment of the standard sample block, the relative error is 2.32%, and in the fuel nozzle cone angle measurement experiment, the relative error is 2.46%, which can meet the high precision requirements of a dual oil circuit centrifugal fuel nozzle.

Linear accuracy of cone-beam computed tomography and a 3-dimensional facial scanning system: An anthropomorphic phantom study

  • Oh, Song Hee;Kang, Ju Hee;Seo, Yu-Kyeong;Lee, Sae Rom;Choi, Hwa-Young;Choi, Yong-Suk;Hwang, Eui-Hwan
    • Imaging Science in Dentistry
    • /
    • v.48 no.2
    • /
    • pp.111-119
    • /
    • 2018
  • Purpose: This study was conducted to evaluate the accuracy of linear measurements of 3-dimensional (3D) images generated by cone-beam computed tomography (CBCT) and facial scanning systems, and to assess the effect of scanning parameters, such as CBCT exposure settings, on image quality. Materials and Methods: CBCT and facial scanning images of an anthropomorphic phantom showing 13 soft-tissue anatomical landmarks were used in the study. The distances between the anatomical landmarks on the phantom were measured to obtain a reference for evaluating the accuracy of the 3D facial soft-tissue images. The distances between the 3D image landmarks were measured using a 3D distance measurement tool. The effect of scanning parameters on CBCT image quality was evaluated by visually comparing images acquired under different exposure conditions, but at a constant threshold. Results: Comparison of the repeated direct phantom and image-based measurements revealed good reproducibility. There were no significant differences between the direct phantom and image-based measurements of the CBCT surface volume-rendered images. Five of the 15 measurements of the 3D facial scans were found to be significantly different from their corresponding direct phantom measurements(P<.05). The quality of the CBCT surface volume-rendered images acquired at a constant threshold varied across different exposure conditions. Conclusion: These results proved that existing 3D imaging techniques were satisfactorily accurate for clinical applications, and that optimizing the variables that affected image quality, such as the exposure parameters, was critical for image acquisition.