• 제목/요약/키워드: Dimensional changes

검색결과 1,581건 처리시간 0.027초

Condylar positioning changes following unilateral sagittal split ramus osteotomy in patients with mandibular prognathism

  • Kim, Myung-In;Kim, Jun-Hwa;Jung, Seunggon;Park, Hong-Ju;Oh, Hee-Kyun;Ryu, Sun-Youl;Kook, Min-Suk
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제37권
    • /
    • pp.36.1-36.7
    • /
    • 2015
  • Background: This study was performed to evaluate three-dimensional positional change of the condyle using three-dimensional computed tomography (3D-CT) following unilateral sagittal split ramus osteotomy (USSRO) in patients with mandibular prognathism. Methods: This study examined two patients exhibiting skeletal class III malocclusion with facial asymmetry who underwent USSRO for a mandibular setback. 3D-CT was performed before surgery, immediately after surgery, and 6 months postoperatively. After creating 3D-CT images by using the In-vivo $5^{TM}$ program, the axial plane, coronal plane, and sagittal plane were configured. Three-dimensional positional changes from each plane to the condyle, axial condylar head axis angle (AHA), axial condylar head position (AHP), frontal condylar head axis angle (FHA), frontal condylar head position (FHP), sagittal condylar head axis angle (SHA), and sagittal condylar head position (SHP) of the two patients were measured before surgery, immediately after surgery, and 6 months postoperatively. Results: In the first patient, medial rotation of the operated condyle in AHA and anterior rotation in SHA were observed. There were no significant changes after surgery in AHP, FHP, and SHP after surgery. In the second patient, medial rotation of the operated condyle in AHA and lateral rotation of the operated condyle in FHA were observed. There were no significant changes in AHP, FHP, and SHP postoperatively. This indicates that in USSRO, postoperative movement of the condylar head is insignificant; however, medial rotation of the condylar head is possible. Although three-dimensional changes were observed, these were not clinically significant. Conclusions: The results of this study suggest that although three-dimensional changes in condylar head position are observed in patients post SSRO, there are no significant changes that would clinically affect the patient.

Three-dimensional assessment of upper lip positional changes according to simulated maxillary anterior tooth movements by white light scanning

  • Kim, Hwee-Ho;Lee, Jin-Woo;Cha, Kyung-Suk;Chung, Dong-Hwa;Lee, Sang-Min
    • 대한치과교정학회지
    • /
    • 제44권6호
    • /
    • pp.281-293
    • /
    • 2014
  • Objective: Esthetic improvements during orthodontic treatment are achieved by changes in positions of the lips and surrounding soft tissues. Facial soft-tissue movement has already been two-dimensionally evaluated by cephalometry. In this study, we aimed to three-dimensionally assess positional changes of the adult upper lip according to simulated maxillary anterior tooth movements by white light scanning. Methods: We measured changes in three-dimensional coordinates of labial landmarks in relation to maxillary incisor movements of normal adults simulated with films of varying thickness by using a white light scanner. Results: With increasing protraction, the upper lip moved forward and significantly upward. Labial movement was limited by the surrounding soft tissues. The extent of movement above the vermilion border was slightly less than half that of the teeth, showing strong correlation. Most changes were concentrated in the depression above the upper vermilion border. Labial movement toward the nose was reduced significantly. Conclusions: After adequately controlling several variables and using white light scanning with high reproducibility and accuracy, the coefficient of determination showed moderate values (0.40-0.77) and significant changes could be determined. This method would be useful to predict soft-tissue positional changes according to tooth movements.

Dimensional Precision in Sinter-hardening PM Steels

  • Lindsley, Bruce;Murphy, Thomas
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.407-408
    • /
    • 2006
  • Dimensional precision is a critical parameter in net shape processing of ferrous PM components. Sinter-hardening alloys undergo a transformation from austenite to martensite. Martensite formation expands the sintered compact, while tempering hardened steels results in shrinkage. In addition, martensitic regions with high Cu and C contents may contain large amounts of retained austenite. The presence of martensite and retained austenite, in addition to the tempering step, all play a role in the final dimensions of a component. This paper investigates the dimensional and microstructural changes to two sinter-hardening grades through different post-sintering thermal treatments.

  • PDF

A combined stochastic diffusion and mean-field model for grain growth

  • Zheng, Y.G.;Zhang, H.W.;Chen, Z.
    • Interaction and multiscale mechanics
    • /
    • 제1권3호
    • /
    • pp.369-379
    • /
    • 2008
  • A combined stochastic diffusion and mean-field model is developed for a systematic study of the grain growth in a pure single-phase polycrystalline material. A corresponding Fokker-Planck continuity equation is formulated, and the interplay/competition of stochastic and curvature-driven mechanisms is investigated. Finite difference results show that the stochastic diffusion coefficient has a strong effect on the growth of small grains in the early stage in both two-dimensional columnar and three-dimensional grain systems, and the corresponding growth exponents are ~0.33 and ~0.25, respectively. With the increase in grain size, the deterministic curvature-driven mechanism becomes dominant and the growth exponent is close to 0.5. The transition ranges between these two mechanisms are about 2-26 and 2-15 nm with boundary energy of 0.01-1 J $m^{-2}$ in two- and three-dimensional systems, respectively. The grain size distribution of a three-dimensional system changes dramatically with increasing time, while it changes a little in a two-dimensional system. The grain size distribution from the combined model is consistent with experimental data available.

Changes in the hyoid bone, tongue, and oropharyngeal airway space after mandibular setback surgery evaluated by cone-beam computed tomography

  • Kim, Seon-Hye;Choi, Sung-Kwon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제42권
    • /
    • pp.27.1-27.9
    • /
    • 2020
  • Background: Mandibular setback surgery can change the position of the mandible which improves occlusion and facial profile. Surgical movement of the mandible affects the base of the tongue, hyoid bone, and associated tissues, resulting in changes in the pharyngeal airway space. The aim of this study was to analyze the 3-dimensional (3D) changes in the hyoid bone and tongue positions and oropharyngeal airway space after mandibular setback surgery. Methods: A total of 30 pairs of cone-beam computed tomography (CBCT) images taken before and 1 month after surgery were analyzed by measuring changes in the hyoid bone and tongue positions and oropharyngeal airway space. The CBCT images were reoriented using InVivo 5.3 software (Anatomage, San Jose, USA) and landmarks were assigned to establish coordinates in a three-dimensional plane. The mean age of the patients was 21.7 years and the mean amount of mandibular setback was 5.94 mm measured from the B-point. Results: The hyoid bone showed significant posterior and inferior displacement (P < 0.001, P < 0.001, respectively). Significant superior and posterior movements of the tongue were observed (P < 0.05, P < 0.05, respectively). Regarding the velopharyngeal and glossopharyngeal spaces, there were significant reductions in the volume and minimal cross-sectional area (P < 0.001). The anteroposterior and transverse widths of the minimal cross-sectional area were decreased (P < 0.001, P < 0.001, respectively). In addition, the amount of mandibular setback positively correlated with the amount of posterior and inferior movement of the hyoid bone (P < 0.05, P < 0.05, respectively). Conclusion: There were significant changes in the hyoid bone, tongue, and airway space after mandibular setback surgery.

Comparative evaluation of sodium hypochlorite and microwave disinfection on dimensional stability of denture bases

  • Nirale, Rutuja Madhukarrao;Thombre, Ram;Kubasad, Girish
    • The Journal of Advanced Prosthodontics
    • /
    • 제4권1호
    • /
    • pp.24-29
    • /
    • 2012
  • PURPOSE. To compare the effect of sodium hypochlorite and microwave disinfection on the dimensional stability of denture bases without and with relining. MATERIALS AND METHODS. A brass die was prepared by simulating an edentulous maxillary arch. It was used to fabricate 1.5 mm and 3 mm of thickness denture bases (n = 40). The 1.5 mm of thickness-specimens (n = 20) were relined with 1.5 mm of autopolymerizing relining resin. Five holes were prepared over crest of ridge of brass die with intimately fitting stainless steel pins which were transferred to the intaglio surface of specimens during fabrication of denture bases. For calculation of dimensional changes in denture bases, differences between the baseline area before and after disinfection of the specimens were used. The denture bases without and with relining were divided into 2 groups (each n =20). Data were analyzed using student paired 't'and unpaired 't'test. RESULTS. Microwave disinfection produces significant shrinkage in both denture bases without relining (t =17.16; P<.001) and with relining (t = 14.9; P<.001). Denture bases without relining showed more shrinkage when compared with relined denture bases after microwave disinfection (t = 6.09; P<.001). The changes in dimensional stability after sodium hypochlorite disinfection were not significant for both denture bases without relining (t = 2.19; P=.056) and denture bases with relining (t = 2.17; P=.058). CONCLUSION. Microwave disinfection leads to increased shrinkage of denture bases without and with relining. Chemical disinfection with sodium hypochlorite seems to be a safer method of disinfection with regards to physical properties such as changes in dimensional stability.

의치상용 레진의 전입 방법에 따른 중합체적변화와 굴곡강도에 관한 연구 (DIMENSIONAL CHANGE AND FLEXURAL STRENGTH IN COMPLETE DENTURES FABRICATED BY INJECTION MOLDING AND CONVENTIONAL COMPRESSION PROCESSING)

  • 최훈달;권긍록;김형섭;최대균
    • 대한치과보철학회지
    • /
    • 제43권4호
    • /
    • pp.478-486
    • /
    • 2005
  • Statement of problem : Fracture and dimensional change of an acrylic resin denture are a rather common occurrence. Purpose : The purpose of this study was to compare differences in dimensional changes and flexural strength of separate maxillary complete dentures after immediate deflasking by injection molding and conventional compression processing. Material and method: To evaluate dimensional stability, the maxillary dentures were fabricated by using different materials and methods. Lucitone 199(Dentsply Trubyte. york, pennsylvania, USA) and Vertex(Dentimex, zeist, Netherlands) were used as materials. Compression and injection packing methods were used as processing methods. The impression surface of the dentures was measured by 3D Scann-ing System(PERCEPTRON USA) and overlapped original impression surface of the master cast. To evaluate flexural strength, resin specimens were made according to the different materials, powder/liquid ratio and processing methods. Flexural strength of the complete resin specimens (64mm$\times$10mm$\times$3.3mm) were measured by INSTRON 4467. (INSTRON, England) The data was analyzed by ANOVA, t-test and Tukey test. (p<.05 level of significance) Result: The results were as follows 1. There was no significant differences between master model and denture base for each group in overall dimensional changes. 2. Palatal area was more stable than flange or alveolar area in dimensional stability. but. there was no significant differences among each area. 3. Materials and power/liquid ratio had an effect on flexural strength. (P<.05) Especially materials was most effective. (P<.05) 4. Lucitone 199(powder/liquid ratio followed by manufacturer's direction) showed higher flexural strength than Vertex. Conclusion : Dimensional stability or flexural strength are affected by materials rather than packing techniques.

얼굴인증 방법들의 조명변화에 대한 견인성 연구 (Study On the Robustness Of Four Different Face Authentication Methods Under Illumination Changes)

  • 고대영;천영하;김진영;이주헌
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2036-2039
    • /
    • 2003
  • This paper focuses on the study of the robustness of face authentication methods under illumination changes. Four different face authentication methods are tried. These methods are as follows; Principal Component Analysis, Gaussian Mixture Models, 1-Dimensional Hidden Markov Models, 2-Dimensional Hidden Markov Models. Experiment results involving an artificial illumination change to face images are compared with each others. Face feature vector extraction method based on the 2-Dimensional Discrete Cosine Transform is used. Experiments to evaluate the above four different face authentication methods are carried out on the Olivetti Research Laboratory(ORL) face database. For the pseudo 2D HMM, the best EER (Equal Error Rate) performance is observed.

  • PDF

임프린트 기반 마이크로 광도파로의 변형 특성 연구 (Dimensional Stability of an Imprinted Microoptic Waveguide)

  • 류진화;김창석;정명영
    • 한국정밀공학회지
    • /
    • 제25권11호
    • /
    • pp.100-106
    • /
    • 2008
  • We have studied the characteristic changes of optical device using imprint lithography. An imprinted structure is inherently involved in residual stress due to the temperature and the pressure cycle during fabrication process. A structure with residual stress undergoes stress relaxation, which leads io dimensional change. Therefore, annealing processes was performed to reduce the residual stress of imprinted polymer channel. Reduction of residual stress was confirmed through dimensional change, birefringence, and the mechanical properties. We have fabricated an optical device, and it saw the optical intensity changes within 0.1% for 1 month.

냉간 밀폐 업세팅시 금형과 단조소재의 성형 단계별 치수 변화 (Dimensional Changes of Workpiece and Die in Cold Upsetting by the Closed-Die at Each Stage)

  • 이영선;권용남;천세환;이정환
    • 소성∙가공
    • /
    • 제12권7호
    • /
    • pp.662-667
    • /
    • 2003
  • The dimensions of die and workpiece are changed continuously during loading, unloading, and ejecting stage. Finally, to predict precisely the dimension of forged part and get the die dimension for the net-shape components, the analysis of die and workpiece should be evaluated from the loading to ejecting. Therefore, the experimental and FEM analyses are performed to investigate the elastic characteristics at workpiece and die in the closed-die upsetting for ferrous material FE techniques are proposed to consider the unloading and ejecting stages and estimate more precisely the dimension of forged part and die. The dimensional changes fur the workpiece were evaluated quantatively during loading, unloading, and ejecting stages. The strains measured by the strain gages were compared with the estimated values by the FEM.