• Title/Summary/Keyword: Dimensional changes

Search Result 1,594, Processing Time 0.027 seconds

Analysis of Performance on Asymmetric LED Lens Design Using Three-Dimensional Free-Form Surface Expression (3차원 자유곡면식을 이용한 LED 비대칭 렌즈 설계 및 성능 비교 분석)

  • Lee, Chang Soo;Lee, Soo Young;Hyun, Dong Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.3
    • /
    • pp.328-336
    • /
    • 2017
  • The exit surface of a lens is designed using a three-dimensional free-form expression in order to easily modify a curved surface. This enables the design of numerical values and mathematical things using three-dimensional free-form expression, and enhances precision because it can be fine-tuned via numerical control. The standard of "Classification of Luminaire Light Distribution" for outdoor lighting fixtures by IESNA is adopted in order to examine the correlation between three-dimensional free-form surface expression and lighting performance. The variation of light distribution type and range is analyzed using the values of maximum light intensity and 50% light intensity. The actual tolerance occurs owing to parameters such as the thickness of the lens, the distance between LEDs, and the movement of the center of the incident surface; the effects of changes in these parameters on the performance are compared and analyzed.

A Study on Improvement on Dimensional Accuracy of SLS parts using Taguchi Method (다구찌 방법을 이용한 SLS 조형품의 치수정밀도 향상에 관한 연구)

  • Hwang, Po-Jung;Yang, Hwa-Jun;Lee, Seok-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.860-865
    • /
    • 2000
  • This Paper Proposes the test pieces of X, Y and Z axes to compensate the shape distortion of Selective Laser Sintering(SLS) parts resulting from the phase change during the sintering process. In no case of the proposed compensation test pieces of X, Y axes the accurate rates of shrinkage can be measured with the reduction of curling which is obtained from adjustment of build orientation and the formula used to get scale factors are proposed with the shrinkage rates of them. The scale factors of X, Y and Z axes are generated by building up proposed compensation test pieces. The generated scale iactors are required to satisfy the dimensional accuracy even if there are changes of the build position and the size of SLS parts in the build chamber. For this reason, it is proposed that the build positions and the size be considered to be noise factors against the compensation test pieces and a method is also proposed that scale factors be selected to robustly maintain the dimensional accuracy of SLS parts under the actual operating conditions with the application of the Taguchi Method.

  • PDF

Three-Dimensional Flow Characteristics of a Circular Impinging Jet Normally Oriented to Crossflow (주유동에 수직으로 분사되는 원형 충돌제트의 3차원 유동특성)

  • Lee, Sang Woo;Jeong, Chul Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1735-1745
    • /
    • 1998
  • Oil-film surface flow visualizations and three-dimensional flow measurements using a straight five-hole probe have been conducted for a circular impinging jet which is normally oriented to the crossflow in a channel. Throughout the experiments, the ratio of channel height to injection hole diameter, H/D, is fixed to be 1.0, and blowing ratio is varied to be 1.0, 2.0, 3.0 and 4.0. From the surface flow visualizations for both top wall(target plate) and bottom wall, impinging jet region on the target plate can be clearly identified, and for the small value of H/D = 1.0, presence of the bottom wall changes the near-hole flow structure, significantly. The three-dimensional flow measurements show that in the dawnstream region of the injection hole, there exist a pair of counter-rotating vortices, called "scarf vortices", and the strength of the vortices strongly depends on the blowing ratio. In addition, a new flow model in the flow symmetry plane has been proposed for H/D = 1.0.

Metal Deposit Distribution in Barrel Plating of Partially Conductive Load

  • 이완구
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.3
    • /
    • pp.68-73
    • /
    • 1983
  • The metal deposition behavior in the barrel tin plating has been studied for the electronic DIP products, and tried to find out some modified factors in order to explain partial ,current flow behavior of this load. The deposition distribution characteristics for DTP products should be classified with the normal barrel plating as partially conductive load. Deposit distribution curves obtained from one-dimensional model have shown strong dependence n the applied current density, rotating speed of barrel and metal ion concentration of the solution. Theoretical formula J=$\delta$'/${\beta}$-{-c$^3$/${\gamma}$-exp-(1-${\alpha}$)n${\Phi}$} derived from one-dimensional porous model has been proposed for the barrel plating behavior where higher overpotential and concentration changes take place during barrel plating.

  • PDF

Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade (곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구)

  • Yun, Won-Nam;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

Finite Element Model for Wear Analysis of Conventional Friction Stir Welding Tool

  • Hyeonggeun Jo;Ilkwang Jang;Yeong Gil Jo;Dae Ha Kim;Yong Hoon Jang
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.118-122
    • /
    • 2023
  • In our study, we develop a finite element model based on Archard's wear law to predict the cumulative wear and the evolution of the tool profile in friction stir welding (FSW) applications. Our model considers the rotational and translational behaviors of the tool, providing a comprehensive description of the wear process. We validate the accuracy of our model by comparing it against experimental results, examining both the predicted cumulative wear and the resulting changes to the tool profile caused by wear. We perform a detailed comparison between the predictions of the model and experimental data by manipulating non-dimensional coefficients comprising model parameters, such as element sizes and time increments. This comparison facilitates the identification of a specific non-dimensional coefficient condition that best replicates the experimentally observed cumulative wear. We also directly compare the worn tool profiles predicted by the model using this specific non-dimensional coefficient condition with the profiles obtained from wear experiments. Through this process, we identify the model settings that yield a tool wear profile closely aligning with the experimental results. Our research demonstrates that carefully selecting non-dimensional coefficients can significantly enhance the predictive accuracy of finite element models for tool wear in FSW processes. The results from our study hold potential implications for enhancing tool longevity and welding quality in industrial applications.

AN EXPERIMENTAL STUDY ON THE VASCULAR CHANGES OF RAT MOLAR PERIODONTAL LIGAMENT FOLLOWING ORTHODONTIC TOOTH MOVEMENT USING VASCULAR CORROSION CASTING METHOD (백서구치의 실험적 치아이동시 치근막 혈관변화에 관한 혈관주형법을 이용한 연구)

  • Lim, Yong-Kyu;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.37-62
    • /
    • 1994
  • This study was undertaken to investigate the three dimensional vascular changes of periodontal ligament following orthodontic tooth movement. Experimental tooth movement was carried out in 96 Sprague-Dawley rats with the weight of 250g. They were divided into four experimental groups (each 24 rats). The left maxillary first molar was moved mesially with 25g force in group I, and with 75g force in group II. Each three animals were sacrificed after 1, 6, 12, 24 hours, and 3, 7, 14, 21 days. In group III, 25g mesial force was applied for 3 days, and in group IV, 75g mesial force was applied for 3 days. Then the appliances were removed, and each three animals were sacrificed after 1, 6, 12, 24 hours, and 3, 7, 14, 21 days from removal of appliance. The contralateral molars were used for control group. Casting media was injected via left ventricle and polymerized in warm water. After corrosion of surrounding soft tissue, three dimensional vascular changes were examined using scanning electron microscopy. The findings of this study were as follows: 1. Pressure side of group I and II showed degenerative vascular changes such as vascular compression, reduction of vasculature, leakage of casting media. But, regenerative changes were dominant after 7 days of tooth movement. Although the degenerative vascular changes were more severe in group II, which was exposed to heavy force, the timing of these changes was not different between two groups. 2. Periodontal vasculature was reestablished by the growth of new capillaries and their differentiation and union from the remaining periodontal vessels and vessels of alveolar bone marrow. Although vascular regeneration was more rapid in group I, which was exposed to light force, the vasculature was not fully normalized in both groups even after 21 days. 3. There was no remarkable changes in tension side of group I and II, but looping of capillary, new capillary growth, dilation of vessels, redirection of vessels in the direction of tensile force were occurred. 4. In pressure side of group III and IV, in which appliance was removed after 3 days of orthodontic force, bone resorption was continued even after removal of appliance. Regeneration of vasculature was initiated after 1-6 hours, and it was more rapid in group III than group IV. In both groups, the vasculature was not fully normalized even after 21 days. 5. After removal of appliance, tension side of group III and IV showed vascular compression and loss of vasculature.

  • PDF

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

Developing of Grading Method using 3D Body Measurement Data of Women in Their Thirties -Focusing on Their Proper Body Types-

  • Shin, Ju-young Annie;Nam, Yun-ja
    • Fashion & Textile Research Journal
    • /
    • v.19 no.6
    • /
    • pp.749-758
    • /
    • 2017
  • The purpose of the present study is to develop a grading deviation, which is appropriate for the body type of women in thirties, by analyzing the three-dimensional body type. The materials for the study were adopted from the body measurement data of women in the age group of 30 to 39 years old, provided from Size Korea. By reflecting the factor analysis results using the three-dimensional shape measurement, deviations were derived. First, six factors influencing the changes in human body shape were derived as waist-hip length factor, bust-waist shape factor, back protrusion back shoulder factor, bust length factor, shoulder length factor, and frontal waist dart factor. The bust size and height, which can be easily utilized for the top original grading, were used for deriving a regression formula, and the deviation was set in accordance with the result. Second, by applying the deviation which reflects the changes in the body shape, the crimps which were generated due to the application of existing deviation were remarkably reduced, indicating that the grading of the present study is more fitting than the existing one. The deviation derived by the analysis of actual increase and decrease of body size was more fitting than the existing one. This was proved by actual wearing experiment, which represents the significance of this study.