• Title/Summary/Keyword: Dimensional accuracy

Search Result 2,590, Processing Time 0.032 seconds

Quality Analysis of Three-Dimensional Geo-spatial Information Using Digital Photogrammetry (수치사진측량 기법을 이용한 3차원 공간정보의 품질 분석)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.141-149
    • /
    • 2010
  • Three-dimensional geo-spatial information is important for the efficient use and management of the country and the three-dimensional expression and analysis of urban projects, such as urban plans devised by local governments and urban management. Thanks to the revitalization of the geo-spatial information service industry, it is now being variously used not only in public but also private areas. For the creation of high-guiltily three-dimensional geo-spatial information, emphasis should be placed on not only the quality of the source image and three-dimensional geo-spatial model but also the level of visualization, such as level of detail and texturing. However, in the case of existing three-dimensional geo-spatial information, its establishment process is complicated and its data are not updated frequently enough, as it uses ready-created digital maps. In addition, as it uses Ortho Images, the images exist Relief displacement. As a result, the visibility is low and the three-dimensional models of artificial features are simplified to reach LoD between 2 and 3, making the images look less realistic. Therefore, this paper, analyzed the quality of three-dimensional geo-spatial information created using the three-dimensional modeling technique were applied using Digital photogrammetry technique, using digital aerial photo images by an existing large-format digital camera and multi-looking camera. The analysis of the accuracy of visualization information of three-dimensional models showed that the source image alone, without other visualization information, secured the accuracy of 84% or more and that the establishment of three-dimensional spatial information carried out simultaneously with filming made it easier to gain the latest data. The analysis of the location accuracy of true Ortho images used in the work process showed that the location accuracy was better than the allowable horizontal position accuracy of 1:1,000 digital maps.

Comparative Analysis of Accuracy between Computerized Tomography and Cephalogram for 3-Dimensional Measurement of Maxillofacial Structure (악안면 3차원 계측시 컴퓨터 단층촬영과 두부 방사선 규격사진의 정확성 비교 분석)

  • Paek, Jong-Su;Song, Jae-Chul;Lee, Hee-Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.18 no.1
    • /
    • pp.123-137
    • /
    • 2001
  • Background: The purpose of this study is to evaluate the accuracy of measurements obtained from 3-dimensional computerized tomography and 3-dimensional cephalogram constructed by using the frontal and lateral cephalogram of six human dry skulls. Materials and Methods: After CT scans and each cephalograms were taken, 3-dimensional coordinates (X, Y, Z) of landmarks were obtained using computer programs. In this study, the accuracy of both methods were determined by means of 14 linear measurements compare with caliper measurements. Results: The standard deviation of landmarks of 3-dimensional CT and 3-dimensional cephalogram were 0.23 mm, and 0.30 mm in X axis, 0.27 mm and 0.25 mm in Y axis, and 0.27 mm and 0.31 mm in Z axis. In both methods, the standard deviation were less than 0.5 mm in all landmarks, and the most of landmarks showed less than 1 mm in range. Concerning the accuracy, the mean difference between 3-dimensional CT and manual measurements was 0.33 mm, and 1.13 mm between 3-dimensional cephalogram and manual measurements. The distance between RGo and LGo showed the largest difference (2.03 mm). There were highly significant, and large correlation with manual measurements in both methods (p<0.01). Conclusion: It is concluded that closeness of repeated measures to each skulls reveal the precision of both methods. Computerized tomography and cephalogram for 3-dimensional measurement of maxillofacial structure are equivalent in quality to caliper measurements.

  • PDF

A Comparative Study between the Accuracy of Three-Dimensional MorphometIy and That of PA CephalometIy in Asymmetry Analysis (비대칭 분석시 3차원영상의 정확성에 관한 정보 두부방사선사진과의 비교연구)

  • Cho, Hong-Kyu
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.95-106
    • /
    • 2001
  • The purpose of this study was to show the method of three-dimensional morphometry developed recently and to compare the accuracy of three-dimensional morphometry with those of PA cephalometry, The three-dimensional morphometry analysis program and device were developed. Steel balls (1.2mm in diameter) were attached in twenty five landmarks of artificial human skull. This artificial human skull was used as experimental materials. From three-dimensional morphometry and PA cephalometry of artificial human skull. eleven linear measurements were acquired and made into asymmetry index. Right-left differences of measurements were used as asymmetry index. These measurements and asymmetry index were compared respectively with those of actual. The results were as follows: 1. Mean difference between three-dimensional morphometry and actual artificial human skull in linear measurements was $1.99{\pm}0.37mm$, and mean difference between PA cephalometry and actual was $21.12{\pm}0.45mm$. Both of all were reduced more than those of actual. 2. Mean difference between three-dimensional morphometry and actual artificial human skull in asymmetry index was $0.07{\pm}0.42$, and mean difference between PA cephalometry and actual was $3.63{\pm}0.60$. Three-dimensional morphometry was reduced while PA cephalometry was magnified more than that of actual. 3. Each eleven asymmetry index of three-dimensional morphometry was the same negative sign as those of actuals while only N-Z, ANS-J, Tr-Go, Tr-ANS asymmetry index were the same in PA cephalometry. These results suggest that the method of three-dimensional morphometry is more accurate than those of PA cephalometry in asymmetry analysis.

  • PDF

The Integration of Automatic Width Control and Gap Control Systems in Hot Plate Mills (열간 압연공정에서 판폭과 판두께의 통합제어)

  • 김병만;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.327-327
    • /
    • 2000
  • Derivation of a slab dimension from the desired tolerance degrades the product quality, resulting in significant yield loss by trimming. This necessitates the dimensional control system to be operated in tighter dimensional accuracy. This paper presents an integral approach to a dimensional control system design taking into account the interaction between the edging process and the gap rolling process. To investigate the effects of each process controller, a simple PID controller is adopted as a preliminary study. The control performance is analyzed in detail in terms of the system response accuracy for various operating conditions.

  • PDF

Vision Inspection Module for Dimensional Measurement in CMM having Vision Probe (비젼프로브를 가지는 3차원 측정기를 위한 형상 측정 시스템 묘듈 개발)

  • 이일환;박희재;김구영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.379-383
    • /
    • 1995
  • In this paper, vision inspection module for dimensional measurement has been developed. For high accuracy of CMM, camera calibration and edge detection with subpixel accuracy have been implemented. In measurement process, the position of vision probe can be recognized in PC by serial communication with CMM controller. The developed vision inspection module can be widely applied to the practical measurement process.

  • PDF

Effect of Product Involvement and Brand Preference on Consumers' Evaluation Effort for Multi-Dimensional Prices (소비자의 다차원가격 평가노력에 대한 제품관여도와 브랜드선호도의 영향)

  • Kim, Jae-Yeong
    • Journal of Distribution Science
    • /
    • v.13 no.4
    • /
    • pp.55-64
    • /
    • 2015
  • Purpose - Multi-dimensional prices comprise multiple components such as monthly payments and a number of payments rather than a single lump-sum amount. According to previous studies, an increase in the number of price dimensions leads to a massive amount of cognitive stress resulting in incorrect calculation, and deterioration in the consistency of the price judgment. However, an increase only in the level of complexity of calculating multi-dimensional prices does not always result in a corresponding decrease in the accuracy of price evaluation. Since diverse variables could affect consumers' purchase-decision-making process, the results of price evaluation would be different. In this study, an empirical analysis was performed to determine how the accuracy of price evaluation varies depending on the extent of the complexity of price dimensions using product involvement and brand preference as moderating variables. Research design, data, and methodology - A survey was conducted on 260 students, and 252 effective responses were used for analysis. The data was analyzed using t-test, one-way ANOVA, and two-way ANOVA. In this study, six hypotheses were developed to examine the effect of product involvement and brand preference on consumers' evaluation effort of multi-dimensional prices. Results - As the number of price dimensions increased, accuracy of price evaluation appeared to be low in high involvement, as expected. However, it showed no differences in price evaluation effort when the level of complexity of calculating multi-dimensional prices is low. When a small number of price dimensions are presented in both cases of high and low involvement, accuracy of price evaluation is much higher in a weak brand preference. On the contrary, a strong brand preference enhances an accuracy of price evaluation only in case of low involvement when the number of price dimensions is increased. An interaction effect of product involvement and brand preference on consumers' evaluation of multi-dimensional prices did not exist irrespective of the level of complexity of calculating prices being high or low. Conclusions - When the number of price dimensions is small, consumers' effort for price evaluation shows almost no difference without the moderating effect of involvement, and a weak brand preference leads to a higher accuracy of price evaluation in an effort to make the best selection. No interaction effect of product involvement and brand preference was found except for a main effect of brand preference. When a price is composed of multiple dimensions rendering it more difficult to calculate the final price, the effort for price evaluation was expected to decrease only slightly in case of combination of high involvement and strong brand preference. This is because people have a higher purchase intentions and trust for that particular brand. However, the accuracy of price evaluation was much lower in cases of high involvement, and there was no interaction effect between product involvement and brand preference except for a main effect of involvement and brand preference, respectively.

Investigation of the effects of storage time on the dimensional accuracy of impression materials using cone beam computed tomography

  • Alkurt, Murat;Duymus, Zeynep Yesil;Dedeoglu, Numan
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.5
    • /
    • pp.380-387
    • /
    • 2016
  • PURPOSE. The storage conditions of impressions affect the dimensional accuracy of the impression materials. The aim of the study was to assess the effects of storage time on dimensional accuracy of five different impression materials by cone beam computed tomography (CBCT). MATERIALS AND METHODS. Polyether (Impregum), hydrocolloid (Hydrogum and Alginoplast), and silicone (Zetaflow and Honigum) impression materials were used for impressions taken from an acrylic master model. The impressions were poured and subjected to four different storage times: immediate use, and 1, 3, and 5 days of storage. Line 1 (between right and left first molar mesiobuccal cusp tips) and Line 2 (between right and left canine tips) were measured on a CBCT scanned model, and time dependent mean differences were analyzed by two-way univariate and Duncan's test (${\alpha}=.05$). RESULTS. For Line 1, the total mean difference of Impregum and Hydrogum were statistically different from Alginoplast (P<.05), while Zetaflow and Honigum had smaller discrepancies. Alginoplast resulted in more difference than the other impressions (P<.05). For Line 2, the total mean difference of Impregum was statistically different from the other impressions. Significant differences were observed in Line 1 and Line 2 for the different storage periods (P<.05). CONCLUSION. The dimensional accuracy of impression material is clinically acceptable if the impression material is stored in suitable conditions.

A Study on Cross Sectional Shape Design of Intermediate Pass in the Multi-Stage Shape Drawing (다단 이형인발공정의 중간패스 단면형상 설계에 관한 연구)

  • Lee, J.E.;Lee, T.K.;Lee, S.K.;Kim, S.M.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.283-289
    • /
    • 2009
  • The multi-stage shape drawing is used to obtain long shaped products with high levels of dimensional accuracy and quality. It is important to design the cross sectional shapes of the intermediate passes to meet the required dimensional accuracy of the final product in the multi-stage shape drawing. Until now, the cross sectional shapes of the intermediate passes have been designed by the experiences. It is still remained unsolved problem to design the cross sectional shapes of intermediate pass drawing dies in the multi-pass shape drawing. In this study, a new technique is proposed to design the cross sectional shapes of intermediate passes. The proposed method is applied to a multi-stage shape drawing for a LM-guide which is one of the representative shape drawing products. In order to verify the effectiveness of the proposed method, FE-simulation and experiments have been carried out. The dimensional accuracy of the proposed method is compared with that of the conventional shape drawing process designed by the industrial engineers.

A Study on Improvement on Dimensional Accuracy of SLS parts using Taguchi Method (다구찌 방법을 이용한 SLS 조형품의 치수정밀도 향상에 관한 연구)

  • Hwang, Po-Jung;Yang, Hwa-Jun;Lee, Seok-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.860-865
    • /
    • 2000
  • This Paper Proposes the test pieces of X, Y and Z axes to compensate the shape distortion of Selective Laser Sintering(SLS) parts resulting from the phase change during the sintering process. In no case of the proposed compensation test pieces of X, Y axes the accurate rates of shrinkage can be measured with the reduction of curling which is obtained from adjustment of build orientation and the formula used to get scale factors are proposed with the shrinkage rates of them. The scale factors of X, Y and Z axes are generated by building up proposed compensation test pieces. The generated scale iactors are required to satisfy the dimensional accuracy even if there are changes of the build position and the size of SLS parts in the build chamber. For this reason, it is proposed that the build positions and the size be considered to be noise factors against the compensation test pieces and a method is also proposed that scale factors be selected to robustly maintain the dimensional accuracy of SLS parts under the actual operating conditions with the application of the Taguchi Method.

  • PDF

Dimensional Accuracy of Cylindrical Cups in Multi-Stage Drawing of Aluminum Sheet Metal (알루미늄 판재의 다단계 드로잉에 있어서 원통컵의 치수 정밀도 비교)

  • Choi, J.M.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.115-120
    • /
    • 2015
  • Deep drawing of cylindrical cups is one of the most fundamental and important processes in sheet metal forming. Circular cups are widely used in industrial fields such as automobile and electronic appliances. Some of these cups are formed by a one-stage process, others such as battery cases and beverage cans are made by a multi-stage process. In the current study the multi-stage deep drawing of aluminum sheet metal is examined. The process consists of two deep drawing operations followed by two ironing operations. The press die, which can be used for the four-stage forming process, was manufactured allowing punch and die components to be easily changed for various experiments. The rolling direction of both the sheet and the drawn cups was always positioned toward the horizontal x-direction on the die face to minimize experimental errors during the progressive forming. The dimensional accuracy of the cylindrical cups formed at each stage and the earing defect due to the anisotropy of sheet were investigated. The influence of anisotropy on the thickness distribution was also examined. Both the thickness and the outer diameter of the cups were measured and compared for each set of experimental conditions. It was found that the dimensional accuracy of cups rapidly improves by employing the ironing process and also by increasing the amount of ironing.