• 제목/요약/키워드: Dimensional Optimization

검색결과 1,021건 처리시간 0.027초

가중치방법과 유전알고리즘을 이용한 금형가공센터 고속이송체의 다단계 최적설계 (Multi-step Optimization of the Moving Body for the High Speed Machinining Center using Weighted Method and G.A.)

  • 최영휴;배병태;강영진;이재윤;김태형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.23-27
    • /
    • 1997
  • This paper introduces the structural design optimization of a high speed machining center using multi-step optimization combined with G.A.(Genetic Algorithm) and Weighted Method. In this case, the design problem is to find out the best design variables which minimize the static compliance, the dynamic compliance, and the weight of the machine structure simultaneously. Dimensional thicknesses of the thirteen structural members of the machine structure are adopted as design variables. The first step is the cross-section configuration optimization, in which the area moment of inertia of the cross-section for each structural member is maximized while its area is kept constant The second step is a static design optimization, In which the static compliance and the weight of the machine structure are minimized under some dimensional and safety constraints. The third step IS a dynamic design optimization, where the dynamic compliance and the structure weight are minimized under the same constraints. After optunization, static and dynamic compliances were reduced to 62.3% and 95.7% Eorn the initial design, while the weight of the moving bodies are also in the feaslble range.

  • PDF

다단계최적화방법에 의한 선박구조물의 동특성의 최적변경법에 관한연구 (Study on Optimum Modification Method of Dynamic Charcteristics of Ship Structures by Multi-level Optimization)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.574-582
    • /
    • 1999
  • This paper discusses the multi-level optimization method in dynamic optimization problems through stiffened plate of ship structures. In structural optimization the computational cost increases rapidly as the number of design variables increases. And we need a great amount of cal-culation and time on problems of modified dynamic characteristics of large and complicated struc-tures. In this paper the multi-level optimization is proposed which decreases computational time and cost. the dynamic optimum designs of stiffened plate that control the natural frequency and minimize weight subjected to constraints condition are derived. The way to apply the multi-level optimization methods in this study follow: In the first step the dynamic characteristics is controlled for the two-dimensional model of stiffened plate by sensitivity analysis and quasi-least squares methods. In the second step the cross-section of the stiffener is decided so that the weight is minimized under needed constraints by the steepest descent or ascent method. In the third the three-dimensional model is made based on the results of the first step and the second step confirmation and finer tuning of the objective function are carried out. It is shown that the results are effective in the optimum modification for dynamic characteristics of the stiffened plate.

  • PDF

지면효과를 받는 3 차원 WIG 선의 익형 형상 최적화 (Aerodynamic Optimization of 3 Dimensional Wing-In-Ground Airfoils Using Multi-Objective Genetic Algorithm)

  • 이주희;유근열;박경우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3080-3085
    • /
    • 2007
  • Shape optimization of the 3-dimensional WIG airfoil with 3.0-aspect ratio has been performed by using the multi-objective genetic algorithm. The WIG ship effectively floating above the surface by the ram effect and the virtual additional aspect ratio by a ground is one of next-generation and cost-effective transportations. Unlike the airplane flying out of the ground effect, a WIG ship has possibility to capsize because of unsatisfying the static stability. The WIG ship should satisfy aerodynamic properties as well as a static stability. They tend to strong contradict and it is difficult to satisfy aerodynamic properties and static stability simultaneously. It is inevitable that lift force has to scarify to obtain a static stability. Multi-objective optimization technique that the individual objectives are considered separately instead of weighting can overcome the conflict. Due to handling individual objectives, the optimum cannot be unique but a set of nondominated potential solutions: pareto optimum. There are three objectives; lift coefficient, lift-to-drag ratio and static stability. After a few evolutions, the non-dominated pareto individuals can be obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space

  • PDF

Simultaneously evolutionary optimization of several natural frequencies of a two dimensional structure

  • Zhao, Chongbin;Steven, G.P.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제7권5호
    • /
    • pp.447-456
    • /
    • 1999
  • This paper presents a solution method, which can be regarded as the further extension of the generalized evolutionary method (Zhao et al. 1998a), for the simultaneous optimization of several different natural frequencies of a structure in general and a two dimensional structure in particular. The main function of the present method is to optimize the topology of a structure so as to simultaneously make several different natural frequencies of interest to be of the corresponding different desired values for the target structure. In order to develop the present method, the new contribution factor of an element is proposed to consider the contribution of an element to the gaps between the currently calculated values for the different natural frequencies of interest and their corresponding desired values in a weighted manner. Using this new contribution factor of an element, the most inefficiently used material can be detected and removed gradually from the design domain of a structure. Through applying the present method to optimize two and three different natural frequencies of a two dimensional structure, it has been demonstrated that it is possible and applicable to use the generalized evolutionary method for tackling the simultaneous optimization of several different natural frequencies of a structure in the structural design.

다수의 취출구를 갖는 A/C덕트의 최적설계에 관한 연구 (A Study on the Optimum Design of Air-Conditioning Duct with Multiple Diffusers)

  • 김민호;이대훈
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.98-106
    • /
    • 2002
  • The airflow characteristics of an air-conditioning duct with multiple diffusers were investigated through one-dimensional analysis, CFD simulation and experimental measurement. One-dimensional program based on Bernoulli's equation and minor loss equations was developed in order to evaluate the air distribution rate at each diffuser. In CFD simulation, three-dimensional flow characteristics inside air-conditioning duct were computed for incompressible viscous flow, adopting the RNG k-$\xi$turbulence model. Also, in an effort to equalize the discharge flow rate at each outlet, the optimization procedure has been performed to obtain the optimum diffuser area. In this process, square of difference between maximum discharge rate and minimum discharge rate is used as an object function. Diffuser area and discharge velocity are established as constraints. After optimization process, determined design variables are applied again in CFD simulation and experiment to validate the optimized result by one-dimensional program. Comparison with the experimental data of airflow rate distribution showed that the developed program seems to be acceptable and can be useful design tool for an automotive air-conditioning duct in an initial design stage.

열전도 문제에 대한 3 차원 구조물의 위상 최적설계 (Topology Design Optimization of Three Dimensional Structures for Heat Conduction Problems)

  • 문세준;조선호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.327-334
    • /
    • 2005
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to 3-Dimensional heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively, Through several numerical examples, the developed DSA method is verified to yield efficiency and accurate sensitivity results compared with finite difference ones. Also, the topology optimization yields physical meaningful results.

  • PDF

제트송풍기의 공력설계 최적화에 관한 연구 (Study on Optimization of Aerodynamic Design of A Jet Fan)

  • 서성진;김광용;장동욱
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.439-443
    • /
    • 2002
  • In this study, three-dimensional incompressible viscous flow analysis and optimization using response surface method are presented for the design of a jet fan. Steady, incompressible, three-dimensional Reynolds averaged Wavier-Stokes equations are used as governing equations, and standard k-$\epsilon$ turbulence model is chosen as a turbulence model. Governing equations are discretized using finite volume method. Sweep angles and maximum thickness of blade are used as design variables for the shape optimization of the impeller in response surface method. The experimental points which are needed to construct response surface are obtained from the D-optimal design and Full Factorial design and relations between design variables and response surface are examined.

  • PDF

대리모델들을 이용한 인쇄형 열교환기의 최적설계 (Design Optimization of a Printed Circuit Heat Exchanger Using Surrogate Models)

  • 이상문;김광용
    • 한국유체기계학회 논문집
    • /
    • 제14권5호
    • /
    • pp.55-62
    • /
    • 2011
  • Shape optimization of a Printed circuit heat exchanger (PCHE) has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (3-D RANS) analysis and surrogate modeling techniques. The objective function is defined as a linear combination of effectiveness of the PCHE term and pressure drop in the cold channels of the PCHE. The cold channel angle and the ellipse aspect ratio of the cold channel are used as design variables for the optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results of three types of surrogate model are compared each other. The results of the optimizations indicate improved performance in friction loss but low performance in effectiveness than the reference shape.

반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계 (DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION)

  • 이상문;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.187-194
    • /
    • 2010
  • Shape optimization of an upper plenum of PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of eight of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.

  • PDF

반응면기법을 이용한 PBMR 기체냉각형 고온가스로 상층부의 최적설계 (DESIGN OPTIMIZATION OF UPPER PLENUM OF PBMR USING RESPONSE SURFACE APPROXIMATION)

  • 이상문;김광용
    • 한국전산유체공학회지
    • /
    • 제15권3호
    • /
    • pp.16-23
    • /
    • 2010
  • Shape optimization of an upper plenum of a PBMR type gas cooled nuclear reactor has been performed by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and surrogate modeling technique. The objective function is defined as a linear combination of uniformity of flow distribution in the core and pressure drop in the upper plenum and the core. The ratio of thickness of slot to diameter of rising channels, ratio of height of upper plenum to diameter of rising channels, and ratio of height of the slot at inlet to outlet, are used as design variables for optimization. Design points are selected through Latin-hypercube sampling. The optimal point is determined through surrogate-based optimization method which uses 3-D RANS analyses at design points. The results show that the optimum shape represent remarkably improved performance in flow uniformity and friction loss than the reference shape.