• Title/Summary/Keyword: Dimensional Inspection

Search Result 326, Processing Time 0.033 seconds

The Geometric Modeling for 3D Information of X-ray Inspection (스테레오 X-선 검색장치를 이용한 3차원 정보 가시화에 관한 연구)

  • Hwang, Young-Gwan;Lee, Seung-Min;Park, Jong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.145-149
    • /
    • 2014
  • In this study, using X-ray cargo container scanning device and to differentiate the concept of three-dimensional information extraction applied for X-ray scanning device as an ingredient in the rotation of the X-Ray Linear Pushbroom Stereo System by introducing the geometric How to model was introduced. Three-dimensional information obtained through the matching of a single voxel space filled with a random vector operations for each voxel in the three dimensional shape reconstruction algorithm using the definition, and in time, the time required for each step were analyzed. Using OpenCV in each step by applying parallelization techniques approximately 1.8 times improvement in the processing time of the check, but do not meet the target within one minute levels. The other hand, X-ray images by the primary process to convert the point View the results of real-time stereo through a three-dimensional could feel the comfort level.

Development of Annular Optics for the Inspection of Surface Defects on Screw Threads Using Ray Tracing Simulation (광선추적을 사용한 나사산 표면결함 검사용 환형 광학계 개발)

  • Lee, Jiwon;Lim, Yeong Eun;Park, Keun;Ra, Seung Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.491-497
    • /
    • 2016
  • This study aims to develop a vision inspection system for screw threads. To inspect external defects in screw threads, the vision inspection system was developed using front light illumination from which bright images can be obtained. The front light system, however, requires multiple side images for inspection of the entire thread surface, which can be performed by omnidirectional optics. In this study, an omnidirectional optical system was designed to obtain annular images of screw threads using an image sensor and two reflection mirrors; one large concave mirror and one small convex mirror. Optical simulations using backward and forward ray tracing were performed to determine the dimensional parameters of the proposed optical system, so that an annular image of the screw threads could be obtained with high quality and resolution. Microscale surface defects on the screw threads could be successfully detected using the developed annular inspection system.

A Framework for Automated Formwork Quality Inspection using Laser Scanning and Augmented Reality

  • Chi, Hung-lin;Kim, Min-Koo;Thedja, Julian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.13-22
    • /
    • 2020
  • Reinforcement steel fixing is a skilled and manually intensive construction trade. Current practice for the quality assessment of reinforcement steel fixing is normally performed by fabricators and has high potential in having errors due to the tedious nature of the work. In order to overcome the current inspection limitation, this study presents an approach that provides visual assistance and inspection enhancement for inspectors to assess the dimensional layout of reinforcement steel fixing. To this end, this study aims to establish an end-to-end framework for rebar layout quality inspection using laser scanning and Augmented Reality (AR). The proposed framework is composed of three parts: (1) the laser-scanned rebar data processing; (2) the rebar inspection procedure integrating with AR; and (3) the checking and fixing the rebar layout through AR visualization. In order to investigate the feasibility of the proposed framework, a case study assessing the rebar layout of a lab-scaled formwork containing two rebar layers is conducted. The results of the case studies demonstrate that the proposed approach using laser scanning and AR has the potential to produce an intuitive and accurate quality assessment for the rebar layout.

  • PDF

Experimental Evaluation of the Effect of the Mixing Design Factors of the Cementitious Composite for 3D Printer on the Printing Quality (3D 프린터용 시멘트 복합체의 배합요인에 따른 출력 품질의 실험적 평가)

  • Seo, Ji-Seok;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.1
    • /
    • pp.89-96
    • /
    • 2022
  • In this paper, to evaluate the output quality of the cementitious composite mixture for printing with the ME method for construction 3D printer, visual inspection of the output appearance and the dimensional error rate, compressive strength and flexural strength of the output were measured. As a result of the test, the mixing design with excellent output appearance was P1-2, P1-4, P2-5, P2-6, and the mixing design with good output appearance was P0-1, P1-1, P1-3, P1-6, P1-7 and P2-4. Of these mixing designs, P0-1 and P2-6 had the lowest dimensional error rates As a result of evaluating the compressive strength and flexural strength of the various mixing designs, the Mixing design with excellent output designs showed good mechnical properties. However, mixing designs with excellent mechanical properties does not necessarily have excellent output quality. Therefore, in order to accurately evaluate the output quality, it is judged that visual inspection and dimensional error rate inspection should be performed first, and then the mechanical characteristics should be reviewed.

Development of Automatic Inspection System for Lead Screw of Computer (컴퓨터용 Lead Screw의 자동검사 시스템 개발)

  • Bae, Jin-Ho;Ra, Seung-Woo;Yu, Pill-Sang;Kim, Sung-Gaun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4115-4120
    • /
    • 2010
  • In manual inspection of Lead Screw of computers many workers are needed to inspect samples, and its main disadvantage is that such types of inspection system not only gives low production, but also gives low perfection. Besides, in manual inspection system, the inspection cost of samples is higher than that of the automatic inspection system. Therefore, in this study to compensate these shortcomings, an automatic inspection system is developed. For the inspection of the surfaces and different dimensional parameters of computer Lead screw, a $360^{\circ}$ rotating machine vision system is developed. From the detailed analysis of the inspection results using the present developed inspection system, it is observed that the developed Lead Screw automatic inspection system is superior to those of manually inspection system.

Fabrication of Three-Dimensional Scanning System for Inspection of Massive Sinkhole Disaster Sites (대형 싱크홀 재난 현장 조사용 3차원 형상화 장비 구현)

  • Kim, Soolo;Yoon, Ho-Geun;Kim, Sang-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.341-349
    • /
    • 2020
  • Recently, interest in ground subsidence in urban areas has increased after a large sinkhole occurred near the high-story building area in Jamsil, Seoul, Korea, in 2014. If a massive sinkhole occurs in an urban area, it is crucial to assess its risk rapidly. Access to humans for on-site safety diagnosis may be difficult because of the additional risk of collapse in the disaster area. Generally, inspection using drones equipped with high-speed lidar sensors can be utilized. However, if the sinkhole is created vertically to a depth of 100 m, similar to the sinkhole in Guatemala, the drone cannot be applied because of the wireless communication limit and turbulence inside the sinkhole. In this study, a three-dimensional (3D) scanning system was fabricated and operated using a towed cable in a massive vertical sinkhole to a depth of 200 m. A high-speed lidar sensor was used to obtain a continuous cross-sectional shape at a certain depth. An inertial-measuring unit was applied to compensate for the error owing to the rotation and pendulum movement of the measuring unit. A reconstruction algorithm, including the compensation scheme, was developed. In a vertical hole with a depth of 180 m in the mining area, the fabricated system was applied to scan 0-165 m depth. The reconstructed shape was depicted in a 3D graph.

Automatic Inspection of Geometric Accuracy of Optical Fiber Single Ferrules (광섬유 단심 연결소자의 치수정밀도 자동검사)

  • Kim, Gee-Hong;Kim, Seung-Woo;Lim, Ssang-Gun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.63-68
    • /
    • 2000
  • We present an automatic inspection system which been developed to evaluate the geometric tolerances of the optical fiber connectors with an dimensional accuracy of$\pm0.1\mnm$. The main part of the inspection system comprises a series of machine vision and laser scanning probes to measure the internal and external circle diameters along with concentricity by making the most of advanced edge detection algorithms. Actual experimental results obtained through various repeatability tests demonstrate that the system well satisfies the required industrial demands for in-situ inspection of optical fiber connections in real manufacturing environment.

  • PDF

Development of an Analytic Surface Measurement Module for OMM System (기상측정 시스템을 위한 일반형상 측정 모듈 개발)

  • 조승현;이승용;조명우;권혁동;김문기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.239-242
    • /
    • 2000
  • The purpose of this paper is to establish an effective inspection system by using OMM(ON-Machine Measurement) system. This allows us to reduce the manufacturing lead time by separating the inspection process from manufacturing system. As a first step, the inspection process planning is accomplished by determining the number of measuring points, their locations, measuring path and their sequence. Subsequently, we generate measuring G-codes to be transferred to the machining center through RS232C, and then the inspection process will be performed for each shape. Analysing obtained measuring data, the dimensional tolerance will be validated.

  • PDF

Ultrasonic Inspection of Internal Defects of Potatoes (초음파를 이용한 감자의 내부결함검사)

  • Kim, In-Hoon;Jung, Kyu-Hong;Jang, Kyung-Young;Seo, Ryun;Kim, Man-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.82-88
    • /
    • 2003
  • The nondestructive internal quality evaluation of agricultural products has been strongly required from the needs for individual inspection. Recently, the ultrasonic wave has been considered as a solution fur this problem, and an ultrasonic system was constructed for the ultrasonic NDE of fruits and vegetables in our previous work. In this paper, the practical applicability of our ultrasonic system is tested fur the inspection of internal defects (central cavity) in Atlantic potato. Sound speed and RMS of transmitted ultrasonic wave signal were measured and classification algorithm using 2 dimensional stochastic analysis. was presented. Experimental results showed greater value of sound speed and RMS (root mean square) of transmitted signal in normal samples than in abnormal samples with cavity. Also a stochastic method to distinguish normal and abnormal showed fault detection rate less than 5%.

결함검출을 위한 실험적 연구

  • 목종수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.24-29
    • /
    • 1996
  • The seniconductor, which is precision product, requires many inspection processes. The surface conditions of the semiconductor chip effect on the functions of the semiconductors. The defects of the chip surface is crack or void. Because general inspection method requires many inspection processes, the inspection system which searches immediately and preciselythe defects of the semiconductor chip surface. We propose the inspection method by using the computer vision system. This study presents an image processing algorithm for inspecting the surface defects(crack, void)of the semiconductor test samples. The proposed image processing algorithm aims to reduce inspection time, and to analyze those experienced operator. This paper regards the chip surface as random texture, and deals with the image modeling of randon texture image for searching the surface defects. For texture modeling, we consider the relation of a pixel and neighborhood pixels as noncasul model and extract the statistical characteristics from the radom texture field by using the 2D AR model(Aut oregressive). This paper regards on image as the output of linear system, and considers the fidelity or intelligibility criteria for measuring the quality of an image or the performance of the processing techinque. This study utilizes the variance of prediction error which is computed by substituting the gary level of pixel of another texture field into the two dimensional AR(autoregressive model)model fitted to the texture field, estimate the parameter us-ing the PAA(parameter adaptation algorithm) and design the defect detection filter. Later, we next try to study the defect detection search algorithm.

  • PDF