• Title/Summary/Keyword: Dimensional Control

Search Result 2,861, Processing Time 0.031 seconds

Control of Position of Neutral Line in Flexible Microelectronic System Under Bending Stress (굽힘응력을 받는 유연전자소자에서 중립축 위치의 제어)

  • Seo, Seung-Ho;Lee, Jae-Hak;Song, Jun-Yeob;Lee, Won-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.2
    • /
    • pp.79-84
    • /
    • 2016
  • A flexible electronic device deformed by external force causes the failure of a semiconductor die. Even without failure, the repeated elastic deformation changes carrier mobility in the channel and increases resistivity in the interconnection, which causes malfunction of the integrated circuits. Therefore it is desirable that a semiconductor die be placed on a neutral line where the mechanical stress is zero. In the present study, we investigated the effects of design factors on the position of neutral line by finite element analysis (FEA), and expected the possible failure behavior in a flexible face-down packaging system assuming flip-chip bonding of a silicon die. The thickness and material of the flexible substrate and the thickness of a silicon die were considered as design factors. The thickness of a flexible substrate was the most important factor for controlling the position of the neutral line. A three-dimensional FEA result showed that the von Mises stress higher than yield stress would be applied to copper bumps between a silicon die and a flexible substrate. Finally, we suggested a designing strategy for reducing the stress of a silicon die and copper bumps of a flexible face-down packaging system.

The Numerical Study on the Flow Control of Ammonia Injection According to the Inlet NOx Distribution in the DeNOx Facilities (탈질설비 내에서 입구유동 NOx 분포에 따른 AIG유동제어의 전산해석적 연구)

  • Seo, Deok-Cheol;Kim, Min-Kyu;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.324-330
    • /
    • 2019
  • The selective catalytic reduction system is a highly effective technique for the denitrification of the flue gases emitted from the industrial facilities. The distribution of mixing ratio between ammonia and nitrogen oxide at the inlet of the catalyst layers is important to the efficiency of the de-NOx process. In this study, computational analysis tools have been applied to improve the uniformity of NH3/NO molar ratio by controlling the flow rate of the ammonia injection nozzles according to the distribution pattern of the nitrogen oxide in the inlet flue gas. The root mean square of NH3/NO molar ratio was chosen as the optimization parameter while the design of experiment was used as the base of the optimization algorithm. As the inlet conditions, four (4) types of flow pattern were simulated; i.e. uniform, parabolic, upper-skewed, and random. The flow rate of the eight nozzles installed in the ammonia injection grid was adjusted to the inlet conditions. In order to solve the two-dimensional, steady, incompressible, and viscous flow fields, the commercial software ANSYS-FLUENT was used with the k-𝜖 turbulence model. The results showed that the improvement of the uniformity ranged between 9.58% and 80.0% according to the inlet flow pattern of the flue gas.

Seismic Performance Evaluation of the Underground Utility Tunnel by Response Displacement Method and Response History Analysis (응답변위법과 응답이력해석법을 이용한 지중 공동구의 내진성능 평가)

  • Kwon, Ki-Yong;Lee, Jin-Sun;Kim, Yong-Kyu;Youn, Jun-Ung;Jeong, Soon-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.119-133
    • /
    • 2020
  • Underground utility tunnel, the most representative cut and cover structure, is subjected to seismic force by displacement of the surrounding soil. In 2020, Korea Infrastructure Safety Corporation has published "Seismic Performance Evaluation Guideline for Existing Utility Tunnel." This paper introduces two seismic evaluation methods, RDM (Response Displacement Method) and RHA (Response History Analysis) adopted in the guide and compares the methods for an example of an existing utility tunnel. The test tunnel had been constructed in 1988 and seismic design was not considered. RDM is performed by single and double cosine methods based on the velocity response spectrum at the base rock. RHA is performed by finite difference analysis that is able to consider nonlinear behavior of soil and structure together in two-dimensional plane strain condition. The utility tunnel shows elastic behavior for RDM, but shows plastic hinge for RHA under the collapse prevention level earthquake.

Product Design and Manufacture on Safety Hook and X-jog for application in Hoist and Crane (호이스트 및 크레인에 적용 가능한 안전후크와 X-jog 제품 설계 및 제작)

  • Na, Hyun-Ho;Kim, Do-Jung;Choi, Ju-Seok;Oh, Woo-Jun;Park, Jae-Woong;Lee, Chon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.1
    • /
    • pp.91-96
    • /
    • 2015
  • In this study, we performed a study on prevention of the escape hoist heavy objects on the basis of the case of a disaster occurring during crane operations. A safety hook of the automatic fastening and coupling method by the conventional coupling method, the weight of the outside consisting of a combination of a safety ring structure was designed and manufactured. The main mechanism three-dimensional detail design and structural analysis confirmed the structure and stability of small strain than the allowable stress of the Safety Hook with X-jog through. Safety factor was confirmed to represent the average 1.5 to 1.2 higher than the safety factor to be considered in the general design structure. Therefore, Safety Hook and X-jog in the present study is to be operated upon structural stability is a structure attached to the hoist and crane are considered sufficient.

An Analysis of Heat Transfer Coefficient of Soil Surface in Closed Ecosystems Using CFD (CFD를 이용한 폐쇄생태계 내 토양표면의 열전달계수 분석)

  • Roh, Sang-Mok;Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.1
    • /
    • pp.85-95
    • /
    • 2006
  • A model experiment has been performed to get the heat transfer coefficient on the soil surface in the closed ecosystem. The heat flux on the soil surface was measured and the heat transfer coefficient was derived in the following two cases with 5-stepped control of inside air current speed. One case was that heat flowed from air to soil and the other case was that heat flowed from soil to air. Three dimensional CFD model has been set to simulate thermal environment in the closed ecosystem including soil layers. The standard $k-{\varepsilon}$ model of the CFD program was chosen for turbulence model and heating wire buried in the soil layers was set as heat source option to simulate the case when the temperature of soil surface was higher than that of inside air in the closed ecosystem. Between one case that heat flowed from air to soil and the other case that heat flowed from soil to air, there were big differences in the temperature distribution of soil layers and the heat transfer coefficient of the soil surface. The increasing rate of heat transfer coefficient on each case according to the increase of inside air current speed was similar to each other and it respectively increased linearly. But the heat transfer coefficient on the case that heat flowed from soil to air was much bigger than that of the other case. The model was validated by comparing simulated values of CFD model with measured values of the model experiment. Simulated and measured temperature of inside air and soil layers, and heat transfer coefficient of the soil surface were well accorded and the range of corrected $R^2$ was 0.664 to 0.875. The developed CFD model was well simulated in parts of the temperature of inside air and soil layers, the distribution of the inside air current speed, and heat transfer coefficient of the soil surface were able to be quantitatively analyzed by using this model. Therefore, the model would be applied and used for analysis of heat transfer coefficient between air and surface in various agricultural facilities.

  • PDF

A Study on the Invention of Synthetic Visual Analysis Model for Joseon Royal Tombs (조선 왕릉의 경관관리를 위한 통합적 시각구조분석모델 모색방안)

  • Hong, Youn-Soon;Lee, Ai-Ran;Paek, Chong-Chul
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.33 no.2
    • /
    • pp.49-57
    • /
    • 2015
  • The purpose of this study is to provide the visual landscape modelling on Josun royal tombs and surrounding. The visual landscape of traditional heritage is illustrated by the main view points of analysis. This analysis examines limited view points and cannot reflect a reality of environments. Nowadays various equipments and methodologies are developed for the visual landscape research. This study used new tools for analysis which are Sketch up (3D simulation) and mini helicopter (UAV). With those tools, this research examines not only view points of the analysis but also axis views and disincentive environments as a complex analysis. First of all, the research examined 3D modelling for the virtual simulation and drew coordinates and routes for the UAV operating. Secondly, UAV followed this routes and took linear and continuous views that are real scenes. As a result, it drew 3D simulation could illustrate and control the changing of environments such as the forest density and seasonal variations. Thus, comparing both of them shows efficiently landscape analysis. Thirdly, the study compared virtual and real landscape. Using this 3D modelling, this paper able to elaborate heritage environment and surrounding which omitted by view point analysis. Although this study has limitation practice and exercise on the field, the results and suggestions contribute to the various historic heritage managements and conservations. Moreover, it helps to explain the complex and dimensional landscape analysis.

Treatment outcome of hepatic re-irradiation in patients with hepatocellular carcinoma

  • Seol, Seung Won;Yu, Jeong Il;Park, Hee Chul;Lim, Do Hoon;Oh, Dongryul;Noh, Jae Myoung;Cho, Won Kyung;Paik, Seung Woon
    • Radiation Oncology Journal
    • /
    • v.33 no.4
    • /
    • pp.276-283
    • /
    • 2015
  • Purpose: We evaluated the efficacy and toxicity of repeated high dose 3-dimensional conformal radiation therapy (3D-CRT) for patients with unresectable hepatocellular carcinoma. Materials and Methods: Between 1998 and 2011, 45 patients received hepatic re-irradiation with high dose 3D-CRT in Samsung Medical Center. After excluding two ineligible patients, 43 patients were retrospectively reviewed. RT was delivered with palliative or salvage intent, and equivalent dose of 2 Gy fractions for ${\alpha}/{\beta}=10Gy$ ranged from $31.25Gy_{10}$ to $93.75Gy_{10}$ (median, $44Gy_{10}$). Tumor response and toxicity were evaluated based on the modified Response Evaluation Criteria in Solid Tumors criteria and the Common Terminology Criteria for Adverse Events (CTCAE) ver. 4.0. Results: The median follow-up duration was 11.2 months (range, 4.1 to 58.3 months). An objective tumor response rate was 62.8%. The tumor response rates were 81.0% and 45.5% in patients receiving ${\geq}45Gy_{10}$ and $<45Gy_{10}$, respectively (p = 0.016). The median overall survival (OS) of all patients was 11.2 months. The OS was significantly affected by the Child-Pugh class as 14.2 months vs. 6.1 months (Child-Pugh A vs. B, p < 0.001), and modified Union for International Cancer Control (UICC) T stage as 15.6 months vs. 8.3 months (T1-3 vs. T4, p = 0.004), respectively. Grade III toxicities were developed in two patients, both of whom received ${\geq}50Gy_{10}$. Conclusion: Hepatic re-irradiation may be an effective and tolerable treatment for patients who are not eligible for further local treatment modalities, especially in patients with Child-Pugh A and T1-3.

Real-Time Tracking of Moving Object by Adaptive Search in Spatial-temporal Spaces (시공간 적응탐색에 의한 실시간 이동물체 추적)

  • Kim, Gye-Young;Choi, Hyung-Ill
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.63-77
    • /
    • 1994
  • This paper describes the real-time system which, through analyzing a sequence of images, can extract motional information on a moving object and can contol servo equipment to always locate the moving object at the center of an image frame. An image is a vast amount of two-dimensional signal, so it takes a lot of time to analyze the whole quantity of a given image. Especially, the time needed to load pixels from a memory to processor increase exponentially as the size of an image increases. To solve such a problem and track a moving object in real-time, this paper addresses how to selectively search the spatial and time domain. Based on the selective search of spatial and time domain, this paper suggests various types of techniques which are essential in implementing a real-time tracking system. That is, this paper describes how to detect an entrance of a moving object in the field of view of a camera and the direction of the entrance, how to determine the time interval of adjacent images, how to determine nonstationary areas formed by a moving object and calculated velocity and position information of a moving object based on the determined areas, how to control servo equipment to locate the moving object at the center of an image frame, and how to properly adjust time interval(${\Delta}$t) to track an object taking variable speed.

  • PDF

A Study on the Analysis of the Error in Photometric Stereo Method Caused by the General-purpose Lighting Environment (測光立體視法에서 범용조명원에 기인한 오차 해석에 관한 연구)

  • Kim, Tae-Eun;Chang, Tae-Gyu;Choi, Jong-Soo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.11
    • /
    • pp.53-62
    • /
    • 1994
  • This paper presents a new approach of analyzing errors resulting from nonideal general-purpose lighting environment when the Photometric Stereo Method (PSM) is applied to estimate the surface-orientation of a three-dimensional object. The approach introduces the explicit modeling of the lighting environment including a circular-disk type irradiance object plane and the direct simulation of the error distribution with the model. The light source is modeled as a point source that has a certain amount of beam angle, and the luminance distribution on the irradiance plane is modeled as a Gaussian function with different deviation values. A simulation algorithm is devised to estimate the light source orientation computing the average luminance intensities obtained from the irradiance object planes positioned in three different orientations. The effect of the nonideal lighting model is directly reflected in such simulation, because of the analogy between the PSM and the proposed algorithm. With an instrumental tool designed to provide arbitrary orientations of the object plane at the origin of the coordinate system, experiment can be performed in a systematic way for the error analysis and compensation. Simulations are performed to find out the error distribution by widely varying the light model and the orientation set of the object plane. The simulation results are compared with those of the experiment performed in the same way as the simulation. It is confirmed from the experiment that a fair amount of errors is due to the erroneous effect of the general-purpose lighting environment.

  • PDF

Development of the Accuracy Improvement Algorithm of Geopositioning of High Resolution Satellite Imagery based on RF Models (고해상도 위성영상의 RF모델 기반 지상위치의 정확도 개선 알고리즘 개발)

  • Lee, Jin-Duk;So, Jae-Kyeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.106-118
    • /
    • 2009
  • Satellite imagery with high resolution of about one meter is used widely in commerce and government applications ranging from earth observation and monitoring to national digital mapping. Due to the expensiveness of IKONOS Pro and Precision products, it is attractive to use the low-cost IKONOS Geo product with vendor-provided rational polynomial coefficients (RPCs), to produce highly accurate mapping products. The imaging geometry of IKONOS high-resolution imagery is described by RFs instead of rigorous sensor models. This paper presents four different polynomial models, that are the offset model, the scale and offset model, the Affine model, and the 2nd-order polynomial model, defined respectively in object space and image space to improve the accuracies of the RF-derived ground coordinates. Not only the algorithm for RF-based ground coordinates but also the algorithm for accuracy improvement of RF-based ground coordinates are developed which is based on the four models, The experiment also evaluates the effect of different cartographic parameters such as the number, configuration, and accuracy of ground control points on the accuracy of geopositioning. As the result of a experimental application, the root mean square errors of three dimensional ground coordinates which are first derived by vendor-provided Rational Function models were averagely 8.035m in X, 10.020m in Y and 13.318m in Z direction. After applying polynomial correction algorithm, those errors were dramatically decreased to averagely 2.791m in X, 2.520m in Y and 1.441m in Z. That is, accuracy was greatly improved by 65% in planmetry and 89% in vertical direction.

  • PDF