• Title/Summary/Keyword: Dimensional Control

Search Result 2,861, Processing Time 0.032 seconds

Optimal Perturbation of Null Points Inherent to Riccati Solution and Control of Coupling in Nonuniform Coupled-Lines (불균일 결합선로에서 Riccati 해에 내재된 Null점의 최적 섭동과 결합도 제어)

  • Park, Eui-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.3
    • /
    • pp.35-43
    • /
    • 2001
  • A method is newly presented to synthesize the modal impedances satisfying the desired coupling factor of a reflective (or hack ward) coupled-line. The synthesis is achieved by optimal perturbations of repeating null points of lobes inherent to the solution of the first order nonlinear differential equation for coupling. It is based on the synthesis method of nonlinear source distribution functions for the prescribed space factor pattern in the one-dimensional array antenna. Here, the conventional synthesis method for the even distribution function is extended to the odd case. Resulting modal impedances will have continuously varying profiles. The design procedure of asymmetrical and symmetrical couplers corresponding to the even and odd distribution functions, is examplified to show the generalization and the simplicity of the proposed method.

  • PDF

The application of ecosystem model for the eutrophication control in Masan Bay in summer (하계 마산만의 부영양화 제어를 위한 생태계모델의 적용)

  • Kim, Jong-Gu;Park, Cheong-Gil;Kim, Gwang-Su
    • Journal of Environmental Science International
    • /
    • v.3 no.3
    • /
    • pp.185-195
    • /
    • 1994
  • Masan bay is one of the polluted enclosed bays, which has red tides problem and the formation of oxygen deficient water in the bottom layer. Most important factors that cause eutrophication and red tide is nutrient materials containing nitrogen and phosphorus which stem from terrestrial sources and nutrients released from sediment. Therefore, to improve of water quality, reduction of these nutrient loads should be indispensible. At this study, the three-dimensional numerical hydrodynamic and eutrophication model, which were developed by Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the phytoplankton production and also to evaluate the effect of water quality improvement plans on phytoplankton production. In field sorvey, the range of concentrations of chlorophyll-a at surface area was found to be 29.17 - 212.5mg/m3, which were exceeding eutrophication criteria. The constant currents defined by integrating the simulated tidal currents over 1 tidal cycle showed the counterclockwise eddies in the southern part of Budo. The general directions of constant currents were found to be southward at surface and northward at bottom over all the bay. The eutrophication model was calibrated with the data surveyed in the field area in June, 1993. The calculated results are in fairly good agreement with values within relative error of 30%. The pollutant load from the sources such as the input from terrestrial release from the sediment was reduced by the rate of 50, 70, 90, 98% to effect of phytoplankton production. Phytoplankton production was reduced to of the 90% reduction of the input loads from terrestrial sources and 8% in 90% reduction of the load from sediment.

  • PDF

Recognizing a polyhedron by network constraint analysis

  • Ishikawa, Seiji;Kubota, Mayumi;Nishimura, Hiroshi;Kato, Kiyoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1591-1596
    • /
    • 1991
  • The present paper describes a method of recognizing a polyhedron employing the notion of network constraint analysis. Typical difficulties in three-dimensional object recognition, other than shading, reflection, and hidden line problems, include the case where appearances of an object vary according to observation points and the case where an object to be recognized is occluded by other objects placed in its front, resulting in incomplete information on the object shape. These difficulties can, however, be solved to a large extent, by taking account of certain local constraints defined on a polyhedral shape. The present paper assumes a model-based vision employing an appearance-oriented model of a polyhedron which is provided by placing it at the origin of a large sphere and observing it from various positions on the surface of the sphere. The model is actually represented by the sets of adjacent faces pairs of the polyhedron observed from those positions. Since the shape of a projected face gives constraint to that of its adjacent face, this results in a local constraint relation between these faces. Each projected face of an unknown polyhedron on an acquired image is examined its match with those faces in the model, producing network constraint relations between faces in the image and faces in the model. Taking adjacency of faces into consideration, these network constraint relations are analyzed. And if the analysis finally provides a solution telling existence of one to one match of the faces between the unknown polyhedron and the model, the unknown polyhedron is understood to be one of those memorized models placed in a certain posture. In the performed experiment, a polyhedron was observed from 320 regularly arranged points on a sphere to provide its appearance model and a polyhedron with arbitrarily postured, occluded, or imposed another difficulty was successfully recognized.

  • PDF

Real-time monitoring of grab dredging operation using ECDIS (ECDIS에 의한 grab 준설작업의 실시간 모니터링에 관한 연구)

  • Jung, Ki-Won;Lee, Dae-Jae;Jeong, Bong-Kyu;Lee, Yoo-Won
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.2
    • /
    • pp.140-148
    • /
    • 2007
  • This paper describes on the real-time monitoring of dredging information for grab bucket dredger equipped with winch control sensors and differential global positioning system(DGPS) using electronic chart display and information system(ECDIS). The experiment was carried out at Gwangyang Hang and Gangwon-do Oho-ri on board M/V Kunwoong G-16. ECDIS system monitors consecutively the dredging's position, heading and shooting point of grab bucket in real-time through 3 DGPS attached to the top bridge of the dredger and crane frame. Dredging depth was measured by 2 up/down counter fitted with crane winch of the dredger. The depth and area of dredging in each shooting point of grab bucket are displayed in color band. The efficiency of its operation can be ensured by adjusting the tidal data in real-time and displaying the depth of dredging on the ECDIS monitor. The reliance for verification of dredging operation as well as supervision of dredging process was greatly enhanced by providing three-dimensional map with variation of dredging depth in real time. The results will contribute to establishing the system which can monitor and record the whole dredging operations in real-time as well as verify the result of dredging quantitatively.

Micro-computed tomography analysis of changes in the periodontal ligament and alveolar bone proper induced by occlusal hypofunction of rat molars

  • Shimizu, Yasuhiro;Hosomichi, Jun;Nakamura, Saeko;Ono, Takashi
    • The korean journal of orthodontics
    • /
    • v.44 no.5
    • /
    • pp.263-267
    • /
    • 2014
  • Objective: To three-dimensionally elucidate the effects of occlusal hypofunction on the periodontal ligament and alveolar bone proper of rat molars by micro-computed tomography (micro-CT). Methods: Occlusal function in the molar area was restricted by attaching an anterior bite plate on the maxillary incisors and a metal cap on the mandibular incisors of 5-week-old male Wistar rats for 1 week. The periodontal ligament space and alveolar bone proper around roots of the mandibular first molar were assessed by histology and micro-CT. Results: The periodontal ligament space was narrower and the alveolar bone proper was sparser and less continuous in the hypofunction group than in the control group. Further, both the volume of the periodontal ligament and the volumetric ratio of the alveolar bone proper to the total tissue in the region of interest were significantly lower in the hypofunction group (p < 0.05). Conclusions: Occlusal hypofunction induces atrophic changes in the periodontal ligament and alveolar bone proper of rat molars.

A Study of 2D Micro-patterning of Biodegradable Polymers by MEA (Multi Electrode Array)-based Electrohydrodynamic (EHD) printing (다중 전극 어레이 기반 전기수력학 인쇄 기술을 이용한 생분해성 고분자의 2차원 마이크로 패터닝 연구)

  • Hwang, Tae Heon;Ryu, WonHyoung
    • Particle and aerosol research
    • /
    • v.13 no.3
    • /
    • pp.111-118
    • /
    • 2017
  • Electrohydrodynamic (EHD) printing with the aid of strong electric fields can generate and pattern droplets that are smaller than droplets by other printing technologies. Conventional EHD printing has created two-dimensional (2D) patterns by moving its nozzle or a substrate in X and Y directions. In this study, we aimed to develop an EHD system that can create 2D patterns using a multielectrode array (MEA) without moving a nozzle or substrate. In particular, printing ink mixtures of biodegradable polymers and model dyes was patterned on a thin film made of another biodegradable polymer. Without movement of a nozzle and substrate, stable 2D patterning of minimum $6{\mu}m$ size over a range of about 1 mm away from the nozzle position was achieved by MEA control only. We also demonstrated the possibility of denser 2D pattering of the ink mixtures by moving a target substrate relative to MEA position.

The Effects of Different Angles of Wedged Insoles on Knee Varus Torque in Healthy Subjects

  • Jung, Do-Young;Kwon, Oh-Yun;Yi, Chung-Hwi;Kim, Young-Ho;Kim, Jang-Hwan
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.31-41
    • /
    • 2004
  • The purpose of this study was to examine the effect of the angle of a wedged insole on knee varus torque during walking. Fifteen healthy subjects were recruited. Knee varus torque was measured using three-dimensional motion analysis (Elite). Knee varus torque was normalized to gait cycle (0%: initial contact; 100%: ipsilateral initial contact) and stance phase (0%: initial contact; 100%: ipsilateral toe off). The average peaks of knee varus torque during the stance phase of the gait cycle according to the different insole angles (10 or 15 degrees) were compared using one-way ANOVA with repeated measures. The results showed that in the early stance phase, the average peak knee varus torque increased significantly for both the medial 10 and 15 degree wedged insole conditions and decreased significantly for both the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p<.05). However, there were no significant differences between the 10 and 15 degree wedged insole conditions with either the medial or lateral wedged insole (p>.05). In the late stance phase, the average peak knee varus torque increased significantly for the medial 10 and 15 degree wedged insole conditions (p<.05), but not for the lateral 10 and 15 degree wedged insole conditions as compared with no insole (p>.05). We suggest that these results may be beneficial for manufacturing foot orthotic devices, such as wedged insoles, to control medial and lateral compartment forces in the knee varus-valgus deformity. Further studies of the effects of wedged insole angle on knee varus torque in patients with medial-lateral knee osteoarthritis are needed.

  • PDF

Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Navier-Stokes Equations

  • 이형천
    • Proceedings of the Korean Society of Computational and Applied Mathematics Conference
    • /
    • 2003.09a
    • /
    • pp.1-1
    • /
    • 2003
  • In this talk, a reduced-order modeling methodology based on centroidal Voronoi tessellations (CVT's)is introduced. CVT's are special Voronoi tessellations for which the generators of the Voronoi diagram are also the centers of mass (means) of the corresponding Voronoi cells. The discrete data sets, CVT's are closely related to the h-means clustering techniques. Even with the use of good mesh generators, discretization schemes, and solution algorithms, the computational simulation of complex, turbulent, or chaotic systems still remains a formidable endeavor. For example, typical finite element codes may require many thousands of degrees of freedom for the accurate simulation of fluid flows. The situation is even worse for optimization problems for which multiple solutions of the complex state system are usually required or in feedback control problems for which real-time solutions of the complex state system are needed. There hava been many studies devoted to the development, testing, and use of reduced-order models for complex systems such as unsteady fluid flows. The types of reduced-ordered models that we study are those attempt to determine accurate approximate solutions of a complex system using very few degrees of freedom. To do so, such models have to use basis functions that are in some way intimately connected to the problem being approximated. Once a very low-dimensional reduced basis has been determined, one can employ it to solve the complex system by applying, e.g., a Galerkin method. In general, reduced bases are globally supported so that the discrete systems are dense; however, if the reduced basis is of very low dimension, one does not care about the lack of sparsity in the discrete system. A discussion of reduced-ordering modeling for complex systems such as fluid flows is given to provide a context for the application of reduced-order bases. Then, detailed descriptions of CVT-based reduced-order bases and how they can be constructed of complex systems are given. Subsequently, some concrete incompressible flow examples are used to illustrate the construction and use of CVT-based reduced-order bases. The CVT-based reduced-order modeling methodology is shown to be effective for these examples and is also shown to be inexpensive to apply compared to other reduced-order methods.

  • PDF

MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1 (차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사)

  • Chang, S.M.;Choi, J.C.;Han, C.Y.;Shin, G.H.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

Wave Control by an Array of N Bottom-Mounted Porous Cylinders (N개의 투과성 원기둥 배열에 의한 파랑제어)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.232-241
    • /
    • 2003
  • The interaction of incident monochromiatic waves with N bottom-mounted porous circular cylinders is investigated in the frame of three-dimensional linear potential theory. The fluid domain is divided into N+l regions i.e. a single exterior region and N interior regions, and the diffraction potential in each fluid region is expressed by an eigenfunction expansion method (Williams and Li,2000). The analytic results show that the porous structure reduces both the wave forces and the run-up wave around the cylinder. To verify the developed model, the systematic model test with a line array of porous cylinders is conducted at the wave tank (30m$\times$7m$\times$1.5m). The analytic results are in good agreement with the experimental results within measured frequency range. It is concluded that the breakwater constructed with an array of porous circular cylinders shows the performance of an effective wave barrier together with the seawater-exchange effect and is considered to have vast potentials for the use of seawater-exchanging breakwater in the future.