• 제목/요약/키워드: Dimension accuracy

검색결과 428건 처리시간 0.04초

전방압출 공정에서 제품 변형 이력 (Deformation History of Product during Forward Extrusion Process)

  • 이강희;박용복
    • 소성∙가공
    • /
    • 제10권1호
    • /
    • pp.75-79
    • /
    • 2001
  • The study has been performed for the relation between die and product during forward extrusion by the experiment. Stains of the die have been given by the simple experiment using the strain gauge located at the outer surface of the die. The history of the deformation of the die and the product has been given by the experiment and Lame's formula. The inner pressure of the die causes the deformation of die that affects the accuracy of dimension as well as shape of the product. The product with accurate dimension and shape can be obtained by analysing elastic deformation of the die during the process. The deformation of the die during metal forming process has been usually predicted by the experience of industrial engineer or finite element analysis. But it is difficult to predict the dimension of the product at unloading and ejected states. In the present study, useful results for the deformation history of the die and the product were obtained through the experiment and Lame's formula in forward extrusion which can be applied to the die design for the product with accurate dimension.

  • PDF

Nonlinear finite element formulation for sliding cable structures considering frictional, thermal and pulley-dimension effects

  • Yang, Menggang;Chen, Shizai;Hu, Shangtao
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.205-224
    • /
    • 2022
  • This paper presents a refined finite element formulation for nonlinear static and dynamic analysis of sliding cable structures, overcoming the limitation of the existing approaches that neglect or approximate the friction, pulley dimension, temperature and geometric nonlinearity. A new family of elements with the same framework is proposed, consisting of the cable-pulley (CP) elements considering sliding friction, and the non-sliding cable-pulley (NSCP) elements considering static friction. Thereafter, the complete procedure of static and dynamic analysis using the proposed elements is developed, with the capability of accurately dealing with the friction at each pulley. Several examples are utilized to verify the validity and accuracy of the proposed elements and analysis strategy, and investigate the frictional, thermal and pulley-dimension effects as well. The numerical examples show that the results obtained in this work are in good accordance with the existing works when using the same approximations of friction, pulley dimension and temperature. By avoiding the approximations, the proposed formulation can be effectively adopted in predicting the more precise nonlinear responses of sliding cable structures.

프랙탈 차원을 이용한 단음절 음성의 자$\cdot$모음 분리 (Consonant/Vowel Segmentation in Monosyllabic Speech Data Using the Fractal Dimension)

  • 최철영;김형순;김재호;손경식
    • 한국음향학회지
    • /
    • 제13권3호
    • /
    • pp.51-62
    • /
    • 1994
  • 본 논문에서는 음성신호의 프랙탈 차원을 이용하여 한국어 CV(Consonant-Vowel) 단음절에서 자음과 모음을 분리하는 실험을 하였다. 프랙탈 차원은 Minkowski-Bouligand 차원을 사용하였으며, 형태학적 커버링 (morphological covering) 방법을 이용하여 구하였다. 프랙탈 차원의 음성분리에 있어서의 유용성을 조사하기 위하여 프랙탈 차원과 단구간 에너지 각각을 이용한 음성분리 실험과 에너지와 프랙탈 차원을 같이 이용한 음성분리 실험을 하여 그 결과들을 비교하였다. 실험 결과 에너지의 기울기를 사용한 경우는 $88.0\%$의 바른 분리 결과를 보였고, 프랙탈 차원의 기울기를 사용한 경우는 그보다 더 나은 $93.6\%$의 바른 분리 결과를 보였으며, 에너지의 기울기와 프랙탈 차원의 기울기의 곱을 사용한 경우는 $96.1\%$로 가장 높은 바른 분리결과를 나타냈다. 이를 통해 프랙탈 차원이 음성신호의 분리에 있어서 하나의 유용한 파라메타가 될 수 있음을 확인하였다.

  • PDF

Crack location in beams by data fusion of fractal dimension features of laser-measured operating deflection shapes

  • Bai, R.B.;Song, X.G.;Radzienski, M.;Cao, M.S.;Ostachowicz, W.;Wang, S.S.
    • Smart Structures and Systems
    • /
    • 제13권6호
    • /
    • pp.975-991
    • /
    • 2014
  • The objective of this study is to develop a reliable method for locating cracks in a beam using data fusion of fractal dimension features of operating deflection shapes. The Katz's fractal dimension curve of an operating deflection shape is used as a basic feature of damage. Like most available damage features, the Katz's fractal dimension curve has a notable limitation in characterizing damage: it is unresponsive to damage near the nodes of structural deformation responses, e.g., operating deflection shapes. To address this limitation, data fusion of Katz's fractal dimension curves of various operating deflection shapes is used to create a sophisticated fractal damage feature, the 'overall Katz's fractal dimension curve'. This overall Katz's fractal dimension curve has the distinctive capability of overcoming the nodal effect of operating deflection shapes so that it maximizes responsiveness to damage and reliability of damage localization. The method is applied to the detection of damage in numerical and experimental cases of cantilever beams with single/multiple cracks, with high-resolution operating deflection shapes acquired by a scanning laser vibrometer. Results show that the overall Katz's fractal dimension curve can locate single/multiple cracks in beams with significantly improved accuracy and reliability in comparison to the existing method. Data fusion of fractal dimension features of operating deflection shapes provides a viable strategy for identifying damage in beam-type structures, with robustness against node effects.

Decomposable polynomial response surface method and its adaptive order revision around most probable point

  • Zhang, Wentong;Xiao, Yiqing
    • Structural Engineering and Mechanics
    • /
    • 제76권6호
    • /
    • pp.675-685
    • /
    • 2020
  • As the classical response surface method (RSM), the polynomial RSM is so easy-to-apply that it is widely used in reliability analysis. However, the trade-off of accuracy and efficiency is still a challenge and the "curse of dimension" usually confines RSM to low dimension systems. In this paper, based on the univariate decomposition, the polynomial RSM is executed in a new mode, called as DPRSM. The general form of DPRSM is given and its implementation is designed referring to the classical RSM firstly. Then, in order to balance the accuracy and efficiency of DPRSM, its adaptive order revision around the most probable point (MPP) is proposed by introducing the univariate polynomial order analysis, noted as RDPRSM, which can analyze the exact nonlinearity of the limit state surface in the region around MPP. For testing the proposed techniques, several numerical examples are studied in detail, and the results indicate that DPRSM with low order can obtain similar results to the classical RSM, DPRSM with high order can obtain more precision with a large efficiency loss; RDPRSM can perform a good balance between accuracy and efficiency and preserve the good robustness property meanwhile, especially for those problems with high nonlinearity and complex problems; the proposed methods can also give a good performance in the high-dimensional cases.

주파수 부대역의 켑스트럼 해상도 최적화에 의한 특징추출 (Feature Extraction by Optimizing the Cepstral Resolution of Frequency Sub-bands)

  • 지상문;조훈영;오영환
    • 한국음향학회지
    • /
    • 제22권1호
    • /
    • pp.35-41
    • /
    • 2003
  • 일반적인 음성인식 방법에서는 주파수 전대역에서 추출한 특징벡터를 사용하므로, 각 주파수 부대역은 최종인식 결과에 동등하게 기여한다. 본 논문에서는 주파수 부대역별로 독립적인 특징을 추출하고, 음성인식에 효과적이 되도록 부대역의 켑스트럼 해상도를 조절하는 방법을 제안한다. 주파수 부대역별로 독립적인 특징을 추출하는 멀티밴드 음성인식접근을 사용하여 부대역 특징벡터의 차원을 변화시킨다. 최적의 벡터 차원 조합을 찾기 위하여 음성인식률과 군집화 품질을 사용한다. TIDIGITS 연결 숫자음을 사용한 실험결과에서, 제안한 방법은 전대역 특징추출에 비해 적은 계산량으로도 숫자열 인식률은 99.12%, 백분율 정확도 (percent correct)는 99.775%, 백분율 정밀도 (percent accuracy)는 99.705%를 얻었으며, 이는 전대역 특징벡터에 비해 상대적 오류율을 각각 38%, 32%, 37% 감소시킨 결과이다.

3차원 영상처리를 이용한 암반 사면의 절리 측정에 관한 연구 (Measurement of Rock Slope Joint using 3D Image Processing)

  • 이승호;황영철;심석래;정태영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.854-861
    • /
    • 2005
  • Studied accuracy and practical use possibility of joint measurement that using 3D laser scanner to rock slope. Measured joint of Rock slope and comparison applied 3 dimension laser scanner and clinometer. 3D laser scanning system preserves on computer calculating to 3 dimension coordinate scaning laser to object. and according to laser measurement method of interior, produce correct vector value from charge-coupled device(CCD) or laser reciver and telegram register and time measuring equipment. Create of object x, y, z point coordinates to 3 dimension space of computer. Such 3 dimension point datum (Point Clouds) forms relocate position informations that exist to practical space to computer space. Practical numerical values related between each other. Compared joint distribution and direction that measured by laser scanner and clinometer. By the result, Distribution of joint projected almost equally. Could get more joint datas by measurement of 3 dimension scanner than measured by clinometer. Therefore, There is effect that objectification of rock slope investigation data, shortening of investigation periods, investigation reduction of cost. could know that it is very effective method in joint measuring.

  • PDF

복부에서 측정하는 일회 호흡용적의 정확도 평가 (Accuracy Evaluation of Tidal Volume Measured on the Abdomen)

  • 이인광;김성식;장종찬;김군진;김경아;이태수;차은종
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1298-1303
    • /
    • 2008
  • Respiration is induced by muscular contraction of the chest and abdomen, resulting in the abdominal volume change. Thus, continuous measurement of the abdominal dimension enables to monitor breathing activity. Conductive rubber cord has been previously introduced and tested to develop wearable application for respiratory measurements. This study implemented respiratory monitoring system with the conductive rubber cord in the patient's pants in purpose of quantitative estimation of tidal volume. Air mixed with $0{\sim}5%$ $CO_2$ was inhaled and the respiratory air flow rate, abdominal dimension change, and end tidal $CO_2$ concentration were simultaneously measured in steady state. $CO_2$ inhalation significantly increased the tidal volume in normal physiological state with the subject unawared. The tidal volume estimated from the abdominal dimension change linearly correlated with the tidal volume measured by a pneumotachometer with a correlation coefficient of 0.88. Customized calibration for each subject resulted in relative errors less than 10%. Therefore, the tidal volume was accurately estimated by measuring the abdominal dimension change.

공간정보 기반의 스마트시티 핵심가치 및 지표 설계에 관한 연구 (A Study on the Smart City Core Value and Indicator Design)

  • 박근완;박현지;배성훈;김민관;황승준
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.198-207
    • /
    • 2020
  • Smart City operates with the purpose of solving urban problems. The important thing in smart city operation is that spatial information must be managed at a high level. In addition, it has the characteristics of being managed by one platform. This study presented the core value dimension of smart city based on analysis of various domestic and overseas smart city operation cases. Smart cities are basically operated based on spatial information, and the higher the level of spatial information, the more smart city services can be connected and managed in an integrated manner. The performance dimension of smart city core values presented in the study includes prosperity, personalization, convenience, accuracy, sustainability, safety, environment, integration, etc., and there is a connectivity dimension, a concept that can be managed in an integrated manner. This study will be useful for empirical research on smart city performance dimension design and surveys based on case studies. It will also help field managers who develop, operate, and manage smart cities when quantifying performance dimensions.

SCM415강에 대한 캄드릴링 특성연구 (A Study on the Characteristics of Chamdrilling for SCM415 Steel)

  • 김진수
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.27-34
    • /
    • 2021
  • This study analyzes machining characteristics and presents optimal cutting conditions by measuring the surface roughness, dimensional accuracy, and dimension straightness based on the feed rate after processing the inner diameter hall of SCM415 steel using an automatic CNC(Computerized Numerical Control) lathe. The testing material was cut using an 11.8 mm-diameter Chamdrill after mounting the 32 mm-diameter round bar on an automatic CNC lathe. The cut depth was set at 3 mm, and the cutting speed was fixed at 1500 rpm. The surface roughness, dimensional accuracy, and dimension straightness of 15 testings were measured by changing the feed rate to 0.05, 0.1, and 0.15 mm/rev, respectively. It was difficult to process more than 15 tests during the maching due to noise or break. Additionally, the optimum cutting of SCM415 steel showed excellent surface roughness in the 10th and 11th of testing at cutting speed and feed speed of 1500 rpm and 0.05 mm/rev, respectively. The dimensional accuracy was measured in three dimensions after drilling, which showed good results with an average range of 0.0138-0.0208 mm. Moreover, the lower the feed speed, the higher the accuracy. Additionally, the measurement results of the dimensional straightness showed that the straightness is the straightness was the best at the 1th and 2th cutting regardless of the feed speed.