• Title/Summary/Keyword: Dilution rate

Search Result 572, Processing Time 0.022 seconds

Optimization of Cell Concentration and Dilution Rate in Cell Recycled Ethanol Fermentation (세포재순환 에탄올 발효에서 세포농도와 희석률의 최적화)

  • 이재우;유영제
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.258-264
    • /
    • 1992
  • The rheological characteristics of the ethanol fermentation broth were pseudoplastic when the yeast concentration was above 150g/L. From the viewpoint of rheological properties, the cell concentration below 150g/L was recommended for ethanol fermentation. Since the cell floc was formed at the cell concentration of 100 g/L, yeast cells were not much plugged in the pores of the membrane. The cell concentration above 100g/L was desirable when considering the permeability of the membrane. Since ethanol productivity was the highest when the cell concentration was 130 g/L in cell recycled ethanol fermentation. The optimal dilution rate was determined at 1.3 h-1 at constant cell mass of 130g/L. At this dilution rate, the ethanol productivity and glucose conversion ratio ware 80 g/L$\cdot$h and 0.94, respectively.

  • PDF

High Productivity Ethanol Fermentation Using Flocculant Yeast (응집성 효모에 의한 고생산성 알콜 발효)

  • 손석민;김인규;변유량
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.607-613
    • /
    • 1992
  • A tower fermentor equipped with a modified settler was used for ethanol fermentation using highly flocculating yeast, Saccharomyces uvarum. The settler was constructed of glass column divided into two chambers by a funnel shaped divider. Gas was allowed to escape from lower chamber of the settler through a small tube. This design significantly reduced the turbulence in upper chamber of the settler and made it possible to operate at high dilution rate. Using the tower fermentor, the effects of operating conditions such as initial glucose concentration, dilution rate and cell recycle ratio were studied. The maximum ethanol productivity, 64.0 g/l' h was obtained at a dilution rate 1.1 h -1 and a cell recycle ratio 5 with the corresponding ethanol concentration of 58.8 g/l, and cell mass of 88 g/l.

  • PDF

Continuous Xanthan Fermentations in a Three-Phase Fluidized Bed Bioreactor (삼상유동층 생물반응기에서의 연속식 Xanthan 발효)

  • 서일순;노희찬;허충회
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • The aerobic bacterium Xanthomonas campestris was cultivated continuously in a three-phase fluidized bed bioreactor to produce extracellular polysaccharide xanthan, Fluidized particles of 8.0 mm glass beads were used for disintegrating the large air bubbles even at high viscosities to improve the gas-liquid oxygen transfer rate. Xanthin productivity [kg xanthan/kg cell dry mass·h] and molecular weight increased, with dilution rate in the continuous xanthan fermentations. The specific xanthan productivities were not limited by the oxygen transfer rate and were much higher in the continuous cultivations than those predicted by the results of the batch xanthan fermentations.

Comparison of Immobilization Matrix for Ethanol Fermentation by Zymomonas mobilis and Saccharomyces cerevisiae

  • Ryu, Sang-Ryeol;Lee, Ke-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.438-440
    • /
    • 1997
  • A continuous fermentation system employing immobilized cells of Zymomonas mobilis and Saccharomyces cerevisiae was studied for the mass production of ethanol. Ethanol production by cells immobilized with Ca-alginate was better than those by cells immobilized with K-carrageenan. Maximum ethanol production employing a continuous system by cells immobilized with Ca-alginate was 77.5 $g.l^{-1}h^{-1}$ at a dilution rate of 1.85 $h^{-1}$ with 82% conversion rate for Z. mobilis while that was 40.2 $g.l^{-1}h^{-1}$ at a dilution rate of 0.92 $h^{-1}$ with 85% conversion rate for S. cerevisiae. These results suggest that Ca-alginate is a better cell immobilization matrix than K-carrageenan and that immobilized cells of Z. mobilis are more efficient than S. cerevisiae for ethanol production.

  • PDF

EFFECT OF SOYBEAN EXTRUSION ON NITROGEN METABOLISM, NUTRIENT FLOW AND MICROBIAL PROTEIN SYNTHESIS IN THE RUMEN OF LAMBS

  • Ko, J.Y.;Ha, J.K.;Lee, N.H.;Yoon, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.571-582
    • /
    • 1992
  • Soybeans were dry extruded at three different temperatures (125, 135 and $145^{\circ}C$) for 30 s. Four lambs fitted with cannulae in the rumen and abomasums were used in a balanced $4{\times}4$ Latin square design. Lambs were fed at 2 h intervals for 12 times a day with automatic feeder to maintain steady state conditions in digestive tract. A dual-phase marker system was used to estivate ruminal flow rate of both liquid and solid digesta. Objectives of this study were to determine the effect of extrusion temperature of raw soybean on the ruminal liquid and solid dilution rate, nitrogen digestion and flow at the abomasum and availability of amino acid in lambs. There were no significant effects of extrusion on liquid and solid dilution rate, and liquid volume. Ruminal liquid flow rate was not influenced by extrusion and ranged from 389 to 435 ml/hr. Extrusion had no influence on ruminal OM digestion and flow rate to the abomasums. Dietary N flow to the abomasums increased (p < 0.05) as extruding temperature increased. Extruding temperature had a significant effect (p < 0.05) on flow of N escaping ruminal degradation and ranged from 34.91 to 57.38%. Microbial N synthesized/kg OMTDR ranged from 27 to 37 g and highest with $145^{\circ}C$ ESB diet. Extrusion decreased the amount of degradable amino acid in the rumen and increased the supply of amino acid to the lower gut, especially with 135 and $145^{\circ}C$ ESB diets.

Continuous Production of Sorbitol with Zymomonas mobilis in a Packed Bed Reactor (Zymomonas mobilis에 의한 Packed Bed Reactor를 이용한 연속적인 sorbitol의 형성)

  • 장기효;김영복장현수전억한
    • KSBB Journal
    • /
    • v.11 no.1
    • /
    • pp.58-64
    • /
    • 1996
  • The purpose of this study is to develop a continuous process for sorbitol production using Zymomonas mobilis immobilized in K-carra-geenan. The glutaraldehyde cross-linking of toluene-treated cells immobilized in alginate or chitin showed high enzyme stability for long period. However, loss of enzyme activity was observed at 23% during 210h. In order to investigate the stability of glucose-fructose oxidoreductase of cethyltrimethylammoniumbromide (CT AB) treated cells, the long term continuous process was carried out with Z. mobilis immobilized in K-carrageenan in the continuous stirred tank reactor(CSTR) and the packed bed reactor. The continuous production of sorbitol with the immobilized CT AB permeabilized cells in packed bed reactor was more stable than in CSTR. Two stage continuous process with CT AB treated cells of Z. mobilis immobilized in K-carrageenan was carried out at various dilution rates. At the first stage, the productivity was increased up to 15 g/ $\ell$ -h as dilution rate increased and decreased over 0.32$h^{-1}$ of dilution rate. Similarly, maximum productivity obtained at the second stage was 22g/$\ell$ -h at 0.32$h^{-1}$

  • PDF

Effects of Glucose and Ammonium Concentrations in Continuous Culture for Poly-$\beta$-hydroxybutyrate Production (Poly-$\beta$-hydroxybutyrate 생산을 위한 연속배양에서 포도당 및 암모늄 농도의 영향)

  • 이용우;유영제
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.597-606
    • /
    • 1992
  • Effects of dilution rate, inlet glucose and ammonium chloride concentrations on ,he performance of continuous culture of Alcaligenes eutrQPhus for poly-p-hydroxybutyrate (PHB) production were investigated. When inlet substrate concentrations were maintained constant (inlet glucose concentration = 20 g/l, inlet ammonium chloride concentration = 2 g/l), growth rate of residual biomass and PHB production rate showed its maximum at $0.1h^{-1}$ and $0.06h^{-1}$, respectively, and washout at $0.13h^{-1}$. PHB content decreased from 50% to 25% by increasing dilution rate, while specific PHB production rate increased continuously. Cell mass and PHB concentration gave its maximum values at inlet ammonium chloride concentration of 2 g/l and thereafter decreased, which showed the existence of substrate inhibition by ammonium. When inlet glucose concentration was 30 g/l, cell mass reached its maximum value, while PHB concentration increased continuously. The parameters of kinetic model were evaluated by the graphical and parameter estimation methods. The computer simulation results for the effects of dilution rate, inlet glucose and ammonium chloride concentrations fitted the experimental data very well.

  • PDF

Development of an Automated Measurement System for Dilution Process and Spraying Amount of Disinfectant

  • Kim, Jung-Chul;Chung, Sun-Ok;Cho, Byoung-Kwan;Chang, Hong-Hee;Kim, Suk;Chang, Dongil
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.228-239
    • /
    • 2013
  • Purpose: The objectives of this study were to develop an automated disinfectant dilution system, and an automated data management system for spraying amount for resolving uncertainty problem. Methods: Proper diluting rate was made by a controlled volume pump for liquid disinfectant and a screw conveyer pump for solid disinfectant. The water capacity of disinfecting system of 400 L was controlled by two water level sensors. The water quantity of water tank was controlled by the signals which were produced by the water level sensors. Signals were processed by Labview Programming, and ON/OFF of solenoid valve that was used for controlling water supplying to water tank, was controlled by SSR. The operating time of pumps for disinfectant was controlled quantitatively. A turbine flowmeter was used for development of automated measurement system for spraying amount of disinfectant. In order to save the flowmeter data and to control the spraying system, a multi-function data logger was used, and it was processed and saved in Excel file by a program developed in this study. Results: Labview 2010 was used for programming to control the automated measurement system for spraying amount of disinfectant. Results showed that the relationship between flowmeter value and time had a significant linear relationship such as 0.99 of $R^2$. Generally, 6.74 L/s of diluted disinfectant is sprayed for a vehicle passing through the disinfection system (about 15 seconds). Test results showed that average error between the measured spraying amount and the flowmeter data was 50 mL, and the range of error was 1.3%. Since the amount and time of spraying could be saved in real-time by using the spreadsheet files which could not be modified arbitrarily, it made possible to judge objectively whether the disinfection spraying was performed or not. Test results of spraying liquid and solid disinfectant showed that the errors between the measured discharge rate and the theoretical one were ranged within 3-4% for various dilution rates. Conclusions: The disinfection system developed would be working accurately. The automated spraying data base management system satisfied the purpose of this study. The automated dilution process system developed in this study could discharge liquid and solid disinfectant with accurate dilution rate, relatively.

Production of heteropolysaccharide-7 by Beijerinckia indica HS-2001 with continuous culture

  • Yang, Jae-Gyun;Seo, Hyeong-Pil;Sin, Myeong-Gyo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.249-252
    • /
    • 2003
  • Maximal production of heteropolysaccharide-7(PS-7) with a batch culture for 48 hr was $10.0\;g/{\ell}$ and its conversion rate from 2% (w/v) glucose to PS-7 was 50%. After substitution of media, production of PS-7 continued and reached its maximal production. The highest productivity occurred when the fresh medium, which contained all ingredients, for the production of PS-7 was substituted. Higher production of PS-7 was maintained at a dilution rate of 0.0125, which was established as the optimal dilution rate for the production of PS-7 by B. indica HS-2001.

  • PDF

Analysis of two-stage Continuous Culture System by Transient Response of Single-stage Continuous Culture System (일단 연속 생물반응기의 과도상태 거동을 이용한 이단 연속 생물반응기의 해석)

  • 박성훈;공인수
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.308-316
    • /
    • 1992
  • Two-stage continuous culture system has been studied intensively to maximize the productivity of a cloned gene product in unstable recombinant microorganism. As an effort to optimize the two-stage process, transient behavior of the second-stage was studied theoretically as well as experimentally using Escherichia coli Kl2$\delta$Hl$\delta$trp. A mathematical model describing the transient response to a step change in dilution rate was developed based on the assumption that the adaptation rate of cell growth is proportional to the available growth potential, which is defined as the difference in dilution rates between before and after shift-up. The kinetic parameters appearing in the model equations were the dimensionless step increase in growth rate($\alpha$) and the adaptation rate constant(k). These parameters were evaluated for various dilution rates and temperatures by washout method. This relatively simple adaptation model could predict the specific growth rate of the second-stage successfully. Advantage and disadvantage of the proposed model are also discussed.

  • PDF