• Title/Summary/Keyword: Dilatometry

Search Result 49, Processing Time 0.047 seconds

Dilatometry Analysis of Low Carbon Steel considering Transformation Mismatch Plasticity (변태소성을 고려한 저탄소강 상변태의 Dilatometry 해석)

  • Suh D. W.;Oh C. S.;Kim S. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.332-335
    • /
    • 2005
  • A model is developed to quantitatively analyze the dilatometry curve of carbon steel for the evaluation of phase fraction during transformation. The effect of anisotropic volume change due to transformation mismatch plasticity as well as carbon enrichment in austenite during the transformation is considered in the developed model. The developed model is applied for the analysis of dilatometry curves of carbon steels. The result shows that considering the anisotropic dilatation is very essential to quantitatively evaluate the phase fraction from the dilatation curve.

  • PDF

Microscale Analysis of the Anisotropic Sintering of Metal Powder Compacts

  • Vagnon, Alexandre;Kapelski, Georges;Bouvard, Didier.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.260-261
    • /
    • 2006
  • The behaviour of steel powder compacts during sintering has been investigated by dilatometry and X-ray computed microtomography. Dilatometry measurements showed that the anisotropic deformation results from various phenomena arising at different moments of the cycle including the delubrication stage. Microtomography provided 3D images of the microstructure induced by prior die pressing and its changes throughout sintering. Finally a schematic description of the main phenomena responsible for the deformation of metal powder compacts during sintering is proposed.

  • PDF

Establishing CCT Diagrams for Sinter Hardening Grade Cr-Mo Prealloyed Steels

  • Stetina, G.;Kalss, G.;Gierl, C.;Danninger, H.;Orth, P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.836-837
    • /
    • 2006
  • A CCT diagram for Cr-Mo prealloyed sintered steels suitable for sinter hardening was established by combining dilatometry data, microstructural studies and microhardness measurements of the material. CCT diagrams deepen the understanding of material properties after sinter hardening and support the design of materials on an industrial scale by providing information about required cooling rates for successful sinter hardening of these materials.

  • PDF

Analysis of Recrystallization and Grain Growth Induced Plasticity (재결정과 결정성장 유기 소성현상의 해석)

  • Kim, Se-Jong;Suh, Dong-Woo;Kim, Sung-Jun;Han, Heung-Nam
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.107-110
    • /
    • 2007
  • It has been reported that the permanent strain could happen during recrystallization and grain growth even under the externally applied stress which is much lower than yield stress. In this study, we performed dilatometry experiments under the various compressive stresses and measured the amount of recrystallization and grain growth induced permanent strain. A new constitutive equation based on the concept of boundary migration induced plasticity was suggested to describe the recrystallization and grain growth induced plasticity. This equation was verified by comparing the calculated values with dilatometric experimental data under the various compressive stresses.

  • PDF

A Study on the Sintering Behavior of Nanostructured W-30 wt%Cu Composite Powder by Dilatometry (Dilatometric 분석에 의한 나노구조 W-30 wt%Cu 복합분말의 소결거동연구)

  • 류성수
    • Journal of Powder Materials
    • /
    • v.7 no.2
    • /
    • pp.93-101
    • /
    • 2000
  • In order to clarify the enhanced sintering behavior of nanostructured(NS) W-Cu powder prepared by mechaincal alloying, the sintering behavior during heating stage was analysed by a dilatometry with various heating rates. The sintering of NS W-Cu powders was characterized by the densification of two stages, having two peaks in shrinkage rate curves. The temperature at which the first peak appear was much lower than Cu melting point, and dependent on heating rate. On the basis of the shrinkage rate curves and the microstructural observation, the coupling effect of nanocrystalline W-grain growth and the liquid-like behavior of Cu phase was suggested as a possible mechanism for the enhanced sintering of NS W-Cu powder in the state.

  • PDF

Sinter-bonding of Iron Based Compacts Containing P and Cu

  • Pieczonka, Tadeusz;Kazior, Jan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.306-307
    • /
    • 2006
  • The sinter-bonding behavior of iron based powder mixtures was investigated. To produce the green compacts to be joined the following powders based on $H{\ddot{o}}gan{\ddot{a}}s$ AB grade NC 100.24 plain iron powder were used: NC 100.24 as delivered, PNC 30, PNC 60 and NC 100.24 + 4%Cu powder mixtures. Dimensional behaviour of all those materials during the sintering cycle was monitored by dilatometry. Simple ring shaped specimens as the outer parts and cylindrical as the inner parts were pressed. The influence of parts' composition on joining strength was established. Diffusion of alloying elements: copper and phosphorous, across the bonding surface was controlled by metallography, SEM and microanalysis.

  • PDF

Microstructure and Properties of High Nitrogen Sintered Stainless Steel

  • Pieczonka, Tadeusz;Stoytchev, Marin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.568-569
    • /
    • 2006
  • The use of the nickel free, high nitrogen stainless steel powder and nitriding during sintering of iron based materials have been shown as an alternative way to the conventional PM stainless steels containing nickel. Nitrogen as an alloying element for iron improves in an effective way the properties of sintered alloyed steels. The powder metallurgy route is a suitable way to introduce nitrogen into these alloys and, in particular, to produce high nitrogen (close to the solubility limit) stainless steels. The paper presents and discusses the nitriding behavior of nickel-free stainless steels produced by powder metallurgy method. Alloyed melt was atomized by nitrogen and in this way nitrogen was introduced into the powder. Further nitriding occurred during sintering in a nitrogen atmosphere. For comparison, compacts having the same composition as an alloyed powder were produced from elemental powders mixture. Sintering-nitriding behaviour of investigated materials has been controlled by dilatometry, chemical and X-Ray phase analysis and metallography. Mechanical properties of sintered compacts were also measured.

  • PDF

Study on the sintering Behavior of Mechanecally Alloyed 75W-25Cu Powder Using a Dilatometry Technique

  • Lee, Seong-;Hong, Moon-Hee;Kim, Eun-Pyo-;Houng-Sub;Noh, Joon-Woong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05b
    • /
    • pp.126-126
    • /
    • 1992
  • Solid and liquid sintering behaviors of mechanically alloyed 75W-25Cu powders have been studied by using a dilatometry technique. The sintering was performed under hydrogen atmosphere of 1 atm with a heating rate of 3 $^{\circ}C$/min. The mechanically alloyed 75W-25Cu powders were prepared by high energy ball milling process under argon atmosphere of 1 atm with alloying times of 0 to 400 h. To compare with the sintering behaviors of mechanically alloyed powders, pure Cu and W powders were also sintered under the above conditions, As the mechanical alloying time increased from 0 to 400 h, the shrinkage behavior of the alloyed powders was enhanced during the sintering, and staring temperature of liquid sintering decreased from 1083 to 1068 $^{\circ}C$. The saturation temperature, above which the shrinkage was completed, of liquid phase sintering decreased from 1248 to 1148 $^{\circ}C$ with increasing mechanical alloying time from 200 to 400 h. The residual stress of the mechanically alloyed powder was measured by X-raydiffractometer. The microstructure of sintered spcimen was observed by optical and scanning electron microscope. From these results, variations of solid and liquid sintering behaviors with mechanical alloying time were discussed in terms of the amount of residual stress and the distribution of W and Cu powders in the mechanically alloyed powder.

  • PDF

Microstructure and High Temperature Deformation Behavior of Heat Resistant Stainless Steel for a Retort (열환원반응관용 내열강의 미세조직과 고온변형거동)

  • Choi, G.S.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.165-170
    • /
    • 2013
  • High temperature deformation behavior of a heat-resistant duplex stainless steel, used as a retort in the Pidgeon process for Mg production, was investigated in this study. 25Cr-8Ni based duplex stainless steels were cast into rectangular ingots, with dimensions of $350mm{\times}350mm{\times}100mm$. Nitrogen and yttrium were added at 0.3wt.% each to enhance the heat-resistance of the steel. Phase equilibrium was calculated using the thermodynamic software FactSage$^{(R)}$ and the database of FSStel. For comparison, cast 310S steel, a widely used heat-resistant austenitic stainless steel, was also examined in this study. Dilatometry was conducted on the as-cast ingots for the temperature range from RT to $1200^{\circ}C$ and the thermal expansion coefficients were evaluated. The nitrogen addition was found to have an effect on the thermal expansion behavior for temperatures between 800 and $1000^{\circ}C$. High temperature tensile and compression tests were conducted on the ingots for temperatures ranging from 900 to $1230^{\circ}C$, which is the operation temperature employed in Mg production by the Silico-thermic reduction process. The steel containing both N and Y showed much higher strength as compared to 310S.