• 제목/요약/키워드: Dike structure

Search Result 61, Processing Time 0.023 seconds

Experimental Study on Seismic Performance Evaluation of Lake Dike Structures under Earthquake Loading (지진하중에 의한 방수제 구조물의 내진성능 평가를 위한 실험적 연구)

  • Shin, Eun-Chul;Kang, Hyeon-Hoe;Kim, Tae-Jin;Chae, Young-Su;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.3
    • /
    • pp.53-62
    • /
    • 2011
  • This paper presents the characteristics behavior of dike structure and foundation ground through the shaking table model test. The vibration loadings of design earthquake acceleration of 0.154g was applied to this laboratory model test regarding on dike structure and foundation ground under the structure. The model was formulated with 1/100 design of representative cross section for evaluating the effectiveness of vibration. Based on the test results, we can analysis the behavior of lateral displacement and settlement characteristics of structure under the earthquake loading. The pore water pressure was also monitored in the upper, middle and lower layers of ground. Finally, the actual displacements and pore water pressure of the structure can be predicted by using the results of the laboratory shaking table test.

Pore flow Characteristics in Seabed around Dike Due to Variation of Ground Water Level (지하수위 변화에 따른 호안 주변 지반내의 흐름특성)

  • Kim, Chang-Hoon;Kim, Do-Sam;Hur, Dong-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.5
    • /
    • pp.408-417
    • /
    • 2007
  • Recently, an artificial beach has been constructed compensating for loss of the natural one caused by the development of coastal area, as well as serving as a location for recreational activities such as sea bathing. It is well known that some structure should be constructed to protect an artificial beach from the outflow due to wave action of the reclaimed sand. In general, dike is utilized as the structure to protect an artificial beach. And, one of the factors which may need to be taken into consideration for stability of dike on seabed foundation is the ground water behavior behind dike. However, the interrelated phenomena of nonlinear wave and ground water response have relatively little attention although these interactions are important for stability of structure and sand suction to the artificial beach. In this paper, the numerical wave tank was developed to clarify nonlinear wave, dike and ground water dynamic interaction, which can simulate the difference of ground water and mean water level. Using the developed numerical wave tank, the present study investigates how variation of ground water level influences hydrodynamic characteristics in seabed around dike and numerically simulates the wave fields, pore flow patterns, pore water pressures and vorticities according to variation of ground water level. Numerical results explain well how hydrodynamic characteristics in seabed around dike is affected by the variation of ground water level.

The Analysis of Damage Characteristic and Cause on Infrastructures by Typhoon (시설물별 태풍에 따른 피해특성 및 원인분석)

  • Shin, Chang-Gun;Lee, Jong-Young;Kim, Seok-Jo;Ji, Young-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1602-1610
    • /
    • 2005
  • In this study was investigated and analyzed of damage characteristics for infrastructures by typhoon that have been many occur. The objective Structures were the road and hydraulic structure. The road structure was included the cut-slopes, retaining walls and bridges. The hydraulic structure is divided with the dike, small-scale dam, reservoir and floodgate. The analysis result of the bridge damage cause is river bottom height increase and passage ability decrease. The principal damage reasons of the cut-slope structure are weakening the ground due to the localized torrential downpour and drainage defective. Also, the principal damage reasons of the small-scale dam, reservoir, dike and the floodgate are continuous collapse of dike beside the floodgate.And we divided a typhoon damage occurrence cause with artificial and natural. As the result of analysis, the many damage occurrence cause will be removed by system improvement and technical development.

  • PDF

Effects of Control of Dam Sedimentation by a Hydraulic Structure in a Reservoir (저수지내 수리구조물에 의한 퇴사량 제어 효과)

  • Cho, Hong Je;Kang, Ho Seon
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1157-1167
    • /
    • 2013
  • Sayeon dam is the one that is structured in 1965 and supplying residential water in Ulsan. The hill located within the reservoir near the entrance of the dam spillway plays a role as a natural Dike. According to the recent surveys on change of sediment and effective volume of water kept in store, the latter that decreased 2.92% from twenty million tons and the former increased just 1.65 m. In this survey we examined the application of SED-2D model using measured data of Sayeon dam sediment. In addition we surveyed the inflow control and the water depth to be kept when installing small hydraulic structure similar to Dike around the dam reservoir entrance. To do this, we simulated the hydraulic effects and sediment on the conditions eliminating the hill or installing the structure higher than it. The controlling effects of present hill or adding small hydraulic structure on it was found, though the changes of the measure was not large.

Benthic Environment and Macrofaunal Community Changes During the Dike Construction in Saemangeum Subtidal Area, Korea (새만금 방조제공사로 인한 조하대 환경과 저서동물 군집 변화)

  • An, Soon-Mo;Lee, Jae-Hac;Woo, Han-Jun;Koo, Bon-Joo;Lee, Hyung-Gon;Yoo, Jae-Won;Je, Jong-Gil
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.369-383
    • /
    • 2006
  • The Saemangeum project is one of the biggest reclamation efforts in Korea and may cause coastal ecosystem change due to altered environments and habitat loss. Since February 2002, benthic environment and community structure in the Saemangeum studied area were studied to assess the influence of the project on macrofaunal community. The result of seasonal study from February, 2002 to August 2005 is reported here. Overall, changes of species numbers and dominant species of benthic animals in the periods before (1988) and after $(2002{\sim}2005)$ the Saemangeum dike construction were not evident both inside and outside the dike. However, local environmental and community change were noted The partial completion of Saemangeum dike $(4^{th}\;dike)$ in June 2003 altered water circulation and sediment deposition patterns both inside and outside the dike. Fine sediment was accumulated inside and outside the $4^{th}$ dike while coarse sediment dominated near the main channel (Sinsi gate). Benthic community resl)ended to the altered sediment type in these areas. Species number and diversity in both site was low compared to other sites. The dominant species in these areas were composed of the benthos that had not commonly occurred in the Saemangeum subtidal area.

Flume experiments for studying the effects of submergence on three-dimensional flow structure around a spur dike (수제의 잠김 정도에 따른 3차원 흐름 구조 변화에 관한 실험 연구)

  • Lee, Jiyong;Jeon, Jeongsook;Kim, Youngkyu;Kang, Seokkoo
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.109-120
    • /
    • 2018
  • In this study, we conducted flume experiments to investigate the three-dimensional flow structures around a half-submerged spur dike in a straight open channel flume. The experiments were carried out under the two different Froude numbers, 0.10 and 0.18. The results were compared with the previous experimental result conducted for non-submerged spur dike. Three-dimensional instantaneous velocities were measured using Acoustic Doppler Velocimetry (ADV) and water elevation data were collected using ultra sonic distance sensor. The results show that submergence conditions of the spur dike largely influence the three-dimensional flow structures around a spur dike.

A Study on the Evaluation of Dynamic Behavior and Liquefaction Cau8ed by Earthquake of Sea Dike Structures on the Ground (방조제 축조 예정지반의 지진에 의한 액상화 거동 평가)

  • 도덕현;장병욱;고재만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.2
    • /
    • pp.43-56
    • /
    • 1993
  • The laboratory tests are performed on how the liquefaction potential of the sea dike structures on the saturated sand or silty sand seabed could be affected due to earthquake before and after construction results are given as follows ; 1. Earthquake damages to sea dike structures consist of lateral deformation, settlement, minor abnormality of the structures and differential settlement of embankments, etc. It is known that severe disasters due to this type of damages are not much documented. Because of its high relative cost of the preventive measures against this type of damages, the designing engineer has much freedom for the play of judgement and ingenuity in the selection of the construction methods, that is, by comparing the cost of the preventive design cost at a design stage to reconstruction cost after minor failure. 2. The factors controlling the liquefaction potential of the hydraulic fill structure are magnitude of earthquake(max. surface velocity), N-value(relative density), gradation, consistency(plastic limit), classification of soil(G & vs), ground water level, compaction method, volumetric shear stress and strain, effective confining stress, and primary consolidation. 3. The probability of liquefaction can be evaluated by the simple method based on SPT and CPT test results or the precise method based on laboratory test results. For sandy or silty sand seabed of the concerned area of this study, it is said that evaluation of liquefaction potential can be done by the one-dimensional analysis using some geotechnical parameters of soil such as Ip, Υt' gradation, N-value, OCR and classification of soils. 4. Based on above mentioned analysis, safety factor of liquefaction potential on the sea bed at the given site is Fs =0.84 when M = 5.23 or amax= 0.12g. With sea dike structures H = 42.5m and 35.5m on the same site Fs= 3.M~2.08 and Fs = 1.74~1.31 are obtained, respectively. local liquefaction can be expected at the toe of the sea dike constructed with hydraulic fill because of lack of constrained effective stress of the area.

  • PDF

Estimation of Overflow-Induced Pressure and Velocity on a Mound-Type Sea Dike (월류 시 마운드형태 방조제에 작용하는 압력과 유속 산정)

  • Kim, Taehyung;Yeh, Harry;Kim, Sungwoung;Choi, Myoungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.3
    • /
    • pp.5-13
    • /
    • 2015
  • Wave overflow can cause a failure of sea dike structure. Based on the results of the field surveys on mound-type sea dike, the failure of vicinity of crown and the scouring of toe at the landward was revealed as the most representative failure example. One of the main factors related to this failure pattern is overflow-induced pressure and velocity. Thus, in this study the analytical equations which can determine the pressure and the velocity induced by overflow in sea dike were proposed and verified. To accomplish this, assumed that the flow is quasi-steady and irrotational, and concentric circular streamlines around the vicinity of crown and toe of the sea dike. Flow was assumed as critical state and Bernoulli equation was used to develop the equations that can determine the pressure and velocity at the vicinity of crown and toe of the sea dike. Using these equations, the pressure and the velocity were calculated in condition of various overflow depths and radiuses of circular streamline. Based on the calculation results, while a negative pressure was occurred at the vicinity of crown, a significant amount of positive pressure occurred at the toe. The existence of flow-induced shear stresses was also confirmed. In addition, the limitation of the proposed equations was discussed.

Effect of Environmental Variables on the Inter- and Subtidal Macrobenthic Communities in the Iwon Dike Area (이원방조제 주변의 조간대 및 조하대 대형저서동물의 군집과 환경요인과의 관계)

  • LEE Jae-Hac;YU Ok Hwan;LEE Hyung-Gon;PARK Ja-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.295-306
    • /
    • 2004
  • Spatial patterns in the macrobenthic community structure in the inter- and subtidal zones in front of the Iwon Dike and environmental variables were examined in August 2001, In total, 156 macrobenthic species(123 intertidal species and 90 subtidal species) were recorded during this study, predominately polychaetes $(40{\%})$, bivalves $(22{\%})$, and crustaceans $(22{\%})$. Polychaetes made up less than $40{\%}$ of the intertidal communitr, but more than $50{\%}$ of the subtidal community. The mean density during this study was $1,456ind./m^{2}.$ Multivariate analysis (multidimensional scaling) revealed significant differences in community structure among four regions: near the Iwon dike (B1), the high and middle intertidal zone (B2), low intertidal zone (Al), and subtidal zone (A2). The number of species, total density, and diversity (H') varied significantly among the four regions. The distribution of macrobenthic community was affected by environmental variables, such as ${\%}$ silt/clay content, total sulfide, lose of ignition, and chemical oxygen demand. These environmental variables were negatively correlated with the dominant species (Nephtys polybranchia, Umbonium thomasi, and Scoloplos armiger) in the intertidal area, but positively correlated with the dominant species (Lumbrineris cruzensis, Notomastus latericeus, and Moerella sp.) in the subtidal area. Environmental variables $({\%}\;silt/clay content and total sulfide)$ were positively correlated with the dominant species (Heteromastus filiformis) in region Bl, but negatively correlated with the dominant species (Umbonium thomasi and Scoloplos koreanus) in region B2. Amphipods Urothoe spp. and Monoculodes koreanus were the dominant species in region Al. Umbonium thomasi, the dominant species in region B2, was not found in regions Bl or Al. We suggest that the inter-specific competition for territory and exposure to seawater may be important factors controlling the macrobenthic community structure in the inter- and subtidal zones in front of the Iwon Dike.

Simulation of Water Quality Changes in the Saemangeum Reservoir Induced by Dike Completion (방조제 완공에 따른 호내부 수질변화 모의)

  • Suh, Seung-Won;Lee, Hwa-Young;Yoo, Sang-Cheol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.258-271
    • /
    • 2010
  • In order to figure out hydrodynamic and water quality changes after completion of dike construction of the Saemangeum, which behaves as a semi-enclosed estuarine lake, numerical simulations based on fine grid structure by using EFDC were intensively carried out. In this study some limitations of precedent study has been improved and gate operation were considered. Also 3 phases such as air-water-sediment interaction modeling was considered. It is clear that inner mixing of the Saemangeum is dominated by Mankyeong and Dongjin riverine discharges rather than the gate opening influence through the Lagrangian particle tracking simulations. Vertical DO structure after the dike completion shows steep gradient especially at Dongjin river estuary due to lessen of outer sea water exchange. Increasing SOD at stagnantly changed man-made reservoir might cause oxygen deficiency and accelerating degradation of water quality. According to TSI evaluation test representing eutrophication status, it shows high possibility of eutrophication along Mankyeong waterway in spite of dike completion, while the index is getting high after final closing along Dongjin waterway. Numerical tests with gate operations show significant differences in water quality. Thus it should be noted that proper gate operation plays a major role in preserving target water quality and management for inner development plan.