• Title/Summary/Keyword: Dike gate

Search Result 34, Processing Time 0.019 seconds

Hydraulic Characteristics of the Non-power Soil Cleaning and Keeping System by the Large-Scale Model Test at the Dike Gate (배수문에서 실내모형실험에 의한 무동력 토사제거시스템의 수리 특성)

  • Park, Chan Keun;Oh, Beom Hwan;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.5
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the large-scale hydraulic model test was performed to investigate the hydraulic characteristics for development of the non-power soil cleaning and keeping system at the dike gate. The outlet height, outflow number, outflow discharge, and outflow cycle were compared and analyzed. The non-power soil cleaning and keeping system was most effective at 11.2 mm in the outlet height. And then the mean outflow cycle was 1.09 sec, and the mean outflow discharge was $0.00164m^3/s$. The total outflow number increased gradually as the water level of a water tank increased, and the outlet height decreased. As a level of water tank decreased, the mean outflow cycle was lengthened, and the unit outflow discharge increased. This result showed this system was most effective. To remove the silty clay deposited in facilities, the methods of excavation, dredging, high pressure washing, etc have been applied to the tidal facilities such as land reclamation, a small size fishing port, and a harbor for maintenance. However, this is extremely cost-ineffective, whereas the non-power soil cleaning and keeping system will bring about an enormously positive economic effect. In addition, when the non-power soil cleaning and keeping system is applied to the dike gate of land reclamation, a thorough examination of the local tidal data and the careful system planning are required to prevent the disaster damage caused by flooding.

Estimation for Changing of Hydraulic States Caused by Gate Expansion in Asan Bay (아산만 배수갑문 확장사업에 따른 아산만 해역의 수리특성 변화 검토)

  • Park, Byong-Jun;Song, Hyun-Ku;Song, Tae-Kwan;Jang, Eun-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.337-340
    • /
    • 2008
  • The gate expansion was planed to increase discharge capacity of gate structure at sea dike in Asan Bay. So it was estimated for changing of hydraulic states in Pyeongteak Harbor Zone caused by gate expansion, by 2D and 3D CFD Module. In result, influence of gate expansion was less than tidal current and discharge ratio between old gate and new gate was 4:6.

  • PDF

Simulation of Water Quality Changes in the Saemangeum Reservoir Induced by Dike Completion (방조제 완공에 따른 호내부 수질변화 모의)

  • Suh, Seung-Won;Lee, Hwa-Young;Yoo, Sang-Cheol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.258-271
    • /
    • 2010
  • In order to figure out hydrodynamic and water quality changes after completion of dike construction of the Saemangeum, which behaves as a semi-enclosed estuarine lake, numerical simulations based on fine grid structure by using EFDC were intensively carried out. In this study some limitations of precedent study has been improved and gate operation were considered. Also 3 phases such as air-water-sediment interaction modeling was considered. It is clear that inner mixing of the Saemangeum is dominated by Mankyeong and Dongjin riverine discharges rather than the gate opening influence through the Lagrangian particle tracking simulations. Vertical DO structure after the dike completion shows steep gradient especially at Dongjin river estuary due to lessen of outer sea water exchange. Increasing SOD at stagnantly changed man-made reservoir might cause oxygen deficiency and accelerating degradation of water quality. According to TSI evaluation test representing eutrophication status, it shows high possibility of eutrophication along Mankyeong waterway in spite of dike completion, while the index is getting high after final closing along Dongjin waterway. Numerical tests with gate operations show significant differences in water quality. Thus it should be noted that proper gate operation plays a major role in preserving target water quality and management for inner development plan.

Physical Environment Changes in the Keum River Estuary Due to Dike Gate Operation: III. Tidal Modulation of Low-salinity Water (하구언 수문 작동으로 인한 금강 하구역의 물리적 환경변화: III. 저염수의 조석동조)

  • Choi, Hyun-Yong;Kwon, Hyo-Keun;Lee, Sang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.115-125
    • /
    • 2001
  • To examine the movement of the freshwater discharged artificially into the estuary during ebbing period in the Keum River dike we observed surface salinity variations in three stations along the estuary channel in May 1998 and July 1997 and surface temperature and salinity along the ferry-route between Kunsan and Changhang during eighteen days in July 1999. Based upon the typical features of observed salinity variation, we analyzed the excursion and decay processes of the discharged water. When freshwater is discharged, the low-salinity water forms strong salinity front over the entire estuary width, which basically moves forth and back by tidal modulation along the channel, producing the sudden change of surface salinity with the front passage. Salinity distribution along the channel, which is deduced from time variation of mean salinity over the estuary width, after one tidal period from gate operation suggests that diluted low-salinity water is trapped to the front and surface salinity increases gradually toward the upstream region. This frontal distribution of salinity is interpreted to be produced by the sudden gate operation supplying and stopping of freshwater within about two hours. Daily repeat of freshwater discharge produces separation (double front) or merge between decaying and new-generated fronts depending on dike-gate opening time, and the front decays with salinity increasing if the freshwater supply is stopped more than two days. In addition, the observed fluctuations and deviations in surface salinity variation is explained in terms of the differences of fronts intensity, their transition time and temporal salinity front running along the channel, which can be generated due to artificial gate-operation for the discharging time and water volume in the estuary dike.

  • PDF

The Changes in Hydraulic Characteristics due to the Topographic Changes in the Estuary - In case of Downstream of the Kum River-

  • 조지훈;김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.55-62
    • /
    • 1995
  • The topographic influences for the hydraulic characteristics in the estuary were studied by the hydraulic model test. The upstream boundary is set up at the Kumkang estuary dike and the downstream boundary at the Kunsan outer port. The geometrical model scales in horizontal and vertical are 1/300 and 1/100 respectively so that the distorted ratio is 3. If there is no or little river flow through the gate, the highest water levels are varied with $\pm$ 5cm compared with those before the project. If there is a flood flow through the gate, the highest water levels in front of the estuary dike are reduced 5~2Ocm depending on the frequency of flood compared with those before the project. This means that there is no important risk of excessive water level rise after the dredging.

  • PDF

Benthic Environment and Macrofaunal Community Changes During the Dike Construction in Saemangeum Subtidal Area, Korea (새만금 방조제공사로 인한 조하대 환경과 저서동물 군집 변화)

  • An, Soon-Mo;Lee, Jae-Hac;Woo, Han-Jun;Koo, Bon-Joo;Lee, Hyung-Gon;Yoo, Jae-Won;Je, Jong-Gil
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.369-383
    • /
    • 2006
  • The Saemangeum project is one of the biggest reclamation efforts in Korea and may cause coastal ecosystem change due to altered environments and habitat loss. Since February 2002, benthic environment and community structure in the Saemangeum studied area were studied to assess the influence of the project on macrofaunal community. The result of seasonal study from February, 2002 to August 2005 is reported here. Overall, changes of species numbers and dominant species of benthic animals in the periods before (1988) and after $(2002{\sim}2005)$ the Saemangeum dike construction were not evident both inside and outside the dike. However, local environmental and community change were noted The partial completion of Saemangeum dike $(4^{th}\;dike)$ in June 2003 altered water circulation and sediment deposition patterns both inside and outside the dike. Fine sediment was accumulated inside and outside the $4^{th}$ dike while coarse sediment dominated near the main channel (Sinsi gate). Benthic community resl)ended to the altered sediment type in these areas. Species number and diversity in both site was low compared to other sites. The dominant species in these areas were composed of the benthos that had not commonly occurred in the Saemangeum subtidal area.

Estimation of Hydraulic States Caused by Gate Expansion in Asan Bay (아산만 방조제 배수갑문 확장사업에 따른 주변해역 수리현상 변화 검토)

  • Park, Byong-Jun;Lee, Sang-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.184-193
    • /
    • 2008
  • The gate expansion was planed to increase discharge capacity of gate structure at sea dike in Asan Bay. So it was estimated for changing of hydraulic states in Pyeongteak Harbor Zone caused by gate expansion, using Delft3D, FLOW-3D and hydraulic physical scale model testing. In result, the influence of gate expansion was indicated to be weak.

Water Quality Behavior by the Sluice Gate Operation of Freshwater Lake (배수갑문 방류시점 및 방류량에 따른 담수호의 수질변화)

  • 김선주;김성준;김필식;이창형
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.91-101
    • /
    • 2003
  • Boryeong Seadike located at southwestern seashore of Korean peninsula completed in 1997. Sluice gate operation can be an important factor to maintain lake water quality and reduce retaining time of pollutants within lake. The lake water quality simulation model, WASPS was adopted and tested to find out proper gate operation timing and discharge amount. From the simulation of sluice gate operation, the results showed that the later the time of discharge for loosing 1 day successively to 6 days, the better the quality of water. Discharge amount showed relatively minor changes of water quality. This means that pollutants flowed into lake from watershed do not have enough time to mix up with deep water when the gate opened at early time. About 3 days delay of discharge caused the dilution effect to stabilize the lake water quality in case of Boryeong freshwater lake.

Effect of Artificial Structures on the Long-Term Topographic Changes at Daehang-ri Intertidal Flat, the West Coast of Korea (인공구조물에 의한 대항리 갯벌의 장기 지형변화)

  • Choi, Tae-Jin;Jeong, Eui-Young;Yang, Young Jin;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.75-82
    • /
    • 2020
  • The Daehang-ri intertidal flat located the just outside of the Saemangeum dike has been reported to show new-developing flats. Based on the topographic surveys of 21 times from 2000 to 2016 by a leveling method every year, this site clearly shows variation of deposition/erosion in time and space. Deposition has consistently occurred at the rate of +3.75 cm per year at the area along the dike (Zone 1), and this tidal flat is expanding and prograding seaward. In the area of far from the dike (Zone 2), on the other hand, erosion prevails at the rate of -2.38 cm per year, and this zone tends to retreat landward. However, the erosional trend of Zone 2 has slightly slowed down since 2014. As a whole from 2000 to 2016, net deposition is recorded over 3.0 m at the upper beach and the area adjacent to the dike (Zone 1), while erosion up to 1.0 m in Zone 2. In conclusion, the results at the Daehang-ri intertidal flat clearly revealed that its topographic changes were induced by the artificial structures and water masses through its sluice gate. Counter-clockwise gyre newly created after the sea dikes construction probably results in relocating of sediment outside the dike 1 by transportation of materials eroded from the south to the north along the coast.

Estimation in changes of Tidal Areas due to seawater circulation in Mangyung water area (만경수역의 해수유통으로 인한 조간대 면적변화 추정)

  • Cheon, Gi-Seol;Park, Yeong-Wook;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.133-136
    • /
    • 2002
  • A simulation by the TOPAS model, two dimensional finite difference model was performed on the flows through drainage lock gate for the Saemangeum tidal reclamation project. Analysis focus on the changes of intertidal zone areas according to the operation scheme of the gate. The intertidal zone areas were analyzed as $66{\sim}70\;km^2$ when the opening of the gate was 300 m. It occupied about $85{\sim}90%$ of intertidal zone areas compared to that the Mangyung sea basin was opened without sea-dike. It appeared to be the most effective in terms of securing enough intertidal zone areas when the gate was operated as inflowing sea-water after 2 day's drainage.

  • PDF