• Title/Summary/Keyword: Digital-Twin

Search Result 279, Processing Time 0.036 seconds

Gas Pulsation Analysis in a T-Shaped Suction Passage of a CO2 Twin Rotary Compressor (CO2 트윈 로타리 압축기의 흡입관로에서의 가스맥동 해석)

  • Kim, Woo-Young;Ahn, Jong-Min;Kim, Hyun-Jin;Cho, Sung-Oug
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.8
    • /
    • pp.549-555
    • /
    • 2011
  • For a $CO_2$ one-stage twin rotary compressor, a T-shaped suction port was used to effectively supply the suction gas stream into two individual suction chambers of the twin cylinders. Suction gas pulsations were observed in the pressure sensor signals and these were simulated by using the acoustic modeling of Helmholz resonators in parallel. The module of acoustic modeling was combined to a computer simulation program for the compressor performance. Validation of the simulation program has been carried out for a bench model compressor in a compressor calorimeter. Cooling capacity and the compressor input power were reasonably well compared between the simulation and the calorimeter test. Particularly, good agreement on P-V diagram between the simulation and the test was obtained.

Utilization Exercise Rehabilitation Using Metaverse (VR·AR·MR·XR) (메타버스(가상·증강·혼합·확장현실)를 이용한 운동재활의 활용 방안)

  • Yang, Jeong Ok;Lee, Jook Sook
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.4
    • /
    • pp.249-258
    • /
    • 2021
  • Objective: The aim of this study was to analyze domestic and foreign studies using virtual reality or metaverse for exercise rehabilitation in order to help the disabled or elderly patients with exercise rehabilitation, and suggest a method for using metaverse for exercise rehabilitation. Method: In this study, after analyzing and discussing various information related to the metaverse and exercise rehabilitation through electronic search of recently published papers, academic journals, books, and internet websites, the exercise rehabilitation plan using the metaverse was proposed. Results: In the case of domestic research, the diversity of virtual reality application technology for the rehabilitation of disabled and elderly patients was not secured, but recently, virtual reality or metaverse-related technologies were developed and specialized in a form suitable for exercise rehabilitation. In the case of overseas studies, it was analyzed that exercise rehabilitation using virtual reality and metaverse games for the rehabilitation of disabled and elderly patients can help improve brain, physical ability, and anti-aging by activating the body and mind. Conclusion: Smart metaverse health care is actively introduced to exercise rehabilitation, metaverse telemedicine business is applied to exercise rehabilitation programs, and digital twin games and exercise rehabilitation programs developed by metaverse related companies take into account the characteristics of disabled and elderly patients. If customized smart metaverse healthcare is used for exercise rehabilitation, it is analyzed that it can lead this field.

Comparative Analysis of Building Models to Develop a Generic Indoor Feature Model

  • Kim, Misun;Choi, Hyun-Sang;Lee, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.5
    • /
    • pp.297-311
    • /
    • 2021
  • Around the world, there is an increasing interest in Digital Twin cities. Although geospatial data is critical for building a digital twin city, currently-established spatial data cannot be used directly for its implementation. Integration of geospatial data is vital in order to construct and simulate the virtual space. Existing studies for data integration have focused on data transformation. The conversion method is fundamental and convenient, but the information loss during this process remains a limitation. With this, standardization of the data model is an approach to solve the integration problem while hurdling conversion limitations. However, the standardization within indoor space data models is still insufficient compared to 3D building and city models. Therefore, in this study, we present a comparative analysis of data models commonly used in indoor space modeling as a basis for establishing a generic indoor space feature model. By comparing five models of IFC (Industry Foundation Classes), CityGML (City Geographic Markup Language), AIIM (ArcGIS Indoors Information Model), IMDF (Indoor Mapping Data Format), and OmniClass, we identify essential elements for modeling indoor space and the feature classes commonly included in the models. The proposed generic model can serve as a basis for developing further indoor feature models through specifying minimum required structure and feature classes.

A Study on the Efficient 3D Scanning Method for Digital Twin Configuration in Construction Site (건설현장의 디지털 트윈 구성을 위한 효율적인 3D 스캐닝 방법에 관한 연구)

  • Kim, Seong-Hun;Kim, Tae-Han;Eom, Ire;Won, Jong-Chul
    • Journal of KIBIM
    • /
    • v.12 no.3
    • /
    • pp.39-51
    • /
    • 2022
  • 3D scan technology can utilize real spatial information as it is in virtual space, so it can be usefully used in various fields such as reverse engineering of buildings and process management. Recently, with the development of ICT technology, more precise scan data can be obtained, and scan processing time has also been greatly reduced. In addition, the combination of software and scanning equipment used in 3D scanning technology is very diverse, and results are very different depending on which technology is used. Accordingly, there is a problem that it is difficult for a user who has no experience in 3D scanning technology to determine which technology and equipment should be used to obtain good results. In this study, 3D scan technologies mainly used at home and abroad are investigated, classified, and tested at actual construction sites to suggest considerations and suitable 3D scan methods when using 3D scans in construction sites. The test results were analyzed to evaluate the time it takes to scan, the final quality, and the user's convenience according to each technology method.

Lightweight Algorithm for Digital Twin based on Diameter Measurement using Singular-Value-Decomposition (특이값 분해를 이용한 치수측정 기반 디지털 트윈 알고리즘 경량화)

  • Seungmin Lee;Daejin Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.3
    • /
    • pp.117-124
    • /
    • 2023
  • In the machine vision inspection equipment, diameter measurement is important process in inspection of cylindrical object. However, machine vision inspection equipment requires complex algorithm processing such as camera distortion correction and perspective distortion correction, and the increase in processing time and cost required for precise diameter measurement. In this paper, we proposed the algorithm for diameter measurement of cylindrical object using the laser displacement sensor. In order to fit circle for given four input outer points, grid search algorithms using root-mean-square error and mean-absolute error are applied and compared. To solve the limitations of the grid search algorithm, we finally apply the singular-value-decomposition based circle fitting algorithm. In order to compare the performance of the algorithms, we generated the pseudo data of the outer points of the cylindrical object and applied each algorithm. As a result of the experiment, the grid search using root-mean-square error confirmed stable measurement results, but it was confirmed that real-time processing was difficult as the execution time was 10.8059 second. The execution time of mean-absolute error algorithm was greatly improved as 0.3639 second, but there was no weight according to the distance, so the result of algorithm is abnormal. On the other hand, the singular-value-decomposition method was not affected by the grid and could not only obtain precise detection results, but also confirmed a very good execution time of 0.6 millisecond.

Design of a Zone-based Population Estimation System using Deep Learning Image Recognition for Digital Twin (딥러닝 영상인식을 이용한 디지털 트윈 기반 구역별 유동 인구 추정 시스템 설계)

  • Ok-Kyoon Ha;Jin-chan Kim;Yong-jin Kim;Yong-hun Ok;Dong-hun Na;Uk-ryeol Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.41-42
    • /
    • 2023
  • 인구 밀집도가 높은 곳에서의 안전사고 대응과 이에 대한 예방을 위한 기술 및 해결 방안의 필요성이 증가하고 있다. 이를 위한 기존의 기술들은 지능형 CCTV 기반의 경고 알림을 울리는 방식과 스마트폰의 신호를 수집하여 유동인구를 측정하는 기술 등이 사용되고 있다. 그러나 군중 밀집 사고의 원인인 병목현상과 군중 난류 현상까지 대응하지는 못하는 문제점이 있다. 본 논문에서는 CCTV로부터 수집된 영상 정보만으로 딥러닝 영상인식 기술을 이용하여 병목현상이 일어나기 쉬운 출입구의 유·출입 인구 카운팅과 광장의 밀집도 분석을 디지털 트윈 기반으로 실시하고 이를 통해 위험 상황 발생 시 출입구의 통제와 대피를 위한 안내가 가능한 시스템을 제시한다. 제시하는 시스템은 유동 인구가 많고 인구의 급격한 밀집으로 인해 발생할 수 있는 안전사고의 예방과 이를 해결하기 위한 통제 및 안내를 위한 대처 방법으로 활용할 수 있다.

  • PDF

A Decision Support Model for Intelligent Facility Management through the Digital Transformation

  • Lee, Junsoo;Kim, Kang Hyun;Cha, Seung Hyun;Koo, Choongwan
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.485-492
    • /
    • 2020
  • Information on the energy consumption of buildings that can be obtained through conventional methods is limited. Therefore, this study aims to develop a model that can support decision making about building facility management through digital transformation technologies. Through the IoT sensor, the building's energy data and indoor air quality data are collected, and the monitored data is visualized through the ELK Stack and produced as a dashboard. In addition, the target building is photographed with a 360-degree camera and maps using a tool to create a 360-degree tour. Using such digital transformation technologies, users of buildings can obtain various information in real time without visiting buildings directly. This can lead to changes in actions or actions for building management, supporting facility management decisions, and consequently reducing building energy consumption.

  • PDF

A Study on the Design of Digital Twin System and Required Function for Underground Lifelines (지하공동구 디지털 트윈 체계 및 요구기능 설계에 관한 연구)

  • Jeong, Min-Woo;Lee, Hee-Seok;Shin, Dong-Bin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.248-258
    • /
    • 2021
  • 24-hour monitoring is required to maintain the city's lifeline function in the underground facility for public utilities. And it is necessary to develop technology to exchange the shortage of human resources. It is difficult to reflect the specificity of underground space management in general management methods. This study proposes underground facility for public utilities digital twin system requirements. The concept of space is divided into physical space and virtual space, and the physical space constitutes the type and layout of the sensor that is the basis for the construction of the multimodal image sensor system, and the virtual space constitutes the system architecture. It also suggested system functions according to the task. It will be effective in preventing disasters and maintaining the lifeline function of the city through the digital twins.

A Study on the Development of High Sensitivity Collision Simulation with Digital Twin (디지털 트윈을 적용한 고감도 충돌 시뮬레이션 개발을 위한 연구)

  • Ki, Jae-Sug;Hwang, Kyo-Chan;Choi, Ju-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.813-823
    • /
    • 2020
  • Purpose: In order to maximize the stability and productivity of the work through simulation prior to high-risk facilities and high-cost work such as dismantling the facilities inside the reactor, we intend to use digital twin technology that can be closely controlled by simulating the specifications of the actual control equipment. Motion control errors, which can be caused by the time gap between precision control equipment and simulation in applying digital twin technology, can cause hazards such as collisions between hazardous facilities and control equipment. In order to eliminate and control these situations, prior research is needed. Method: Unity 3D is currently the most popular engine used to develop simulations. However, there are control errors that can be caused by time correction within Unity 3D engines. The error is expected in many environments and may vary depending on the development environment, such as system specifications. To demonstrate this, we develop crash simulations using Unity 3D engines, which conduct collision experiments under various conditions, organize and analyze the resulting results, and derive tolerances for precision control equipment based on them. Result: In experiments with collision experiment simulation, the time correction in 1/1000 seconds of an engine internal function call results in a unit-hour distance error in the movement control of the collision objects and the distance error is proportional to the velocity of the collision. Conclusion: Remote decomposition simulators using digital twin technology are considered to require limitations of the speed of movement according to the required precision of the precision control devices in the hardware and software environment and manual control. In addition, the size of modeling data such as system development environment, hardware specifications and simulations imitated control equipment and facilities must also be taken into account, available and acceptable errors of operational control equipment and the speed required of work.

EdgeCPS Technology Trend for Massive Autonomous Things (대규모 디바이스의 자율제어를 위한 EdgeCPS 기술 동향)

  • Chun, I.G.;Kang, S.J.;Na, G.J.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.1
    • /
    • pp.32-41
    • /
    • 2022
  • With the development of computing technology, the convergence of ICT with existing traditional industries is being attempted. In particular, with the recent advent of 5G, connectivity with numerous AuT (autonomous Things) in the real world as well as simple mobile terminals has increased. As more devices are deployed in the real world, the need for technology for devices to learn and act autonomously to communicate with humans has begun to emerge. This article introduces "Device to the Edge," a new computing paradigm that enables various devices in smart spaces (e.g., factories, metaverse, shipyards, and city centers) to perform ultra-reliable, low-latency and high-speed processing regardless of the limitations of capability and performance. The proposed technology, referred to as EdgeCPS, can link devices to augmented virtual resources of edge servers to support complex artificial intelligence tasks and ultra-proximity services from low-specification/low-resource devices to high-performance devices.