• 제목/요약/키워드: Digital vision measurement

검색결과 69건 처리시간 0.027초

디지털 카메라를 이용한 구조물의 동특성 추출 (Modal Parameter Extraction Using a Digital Camera)

  • 김병화
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.61-68
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted from a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

  • PDF

화상처리에 의한 아크용접에서의 용접품질제어에 관한 연구 (A Study of Weld Quality Control in Arc Welding Using the Digital Image Processing)

  • 김동철;이세현;엄기원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1994년도 추계학술대회 논문집
    • /
    • pp.499-503
    • /
    • 1994
  • The feedback control systems of welding process using visual information can improve weld qualities. However, it is very difficult to get the visual information of weld pool since welding are is much stronger than light from weld pool. To explore the possibility of extending the capability of automatic welding machines a study of a closed loop controlled welding system consisted of a GTA welding machine, a vision system, a stepping motor system and a digital computer was undertaken. Particularly, in this system, a CCD camera with 850nm long pass filter was focused on the weld pool to give a weld pool image. Subsequently, image analysis technique has been developed to measure a weld pool width. Using this weld pool width measurement, a colsed loop control system adjusted welding speed to maintain constant weld pool width.

  • PDF

카메라를 이용한 구조물의 동특성 추출 (Modal Parameter Extraction Using a Digital Camera)

  • 김병화
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1229-1236
    • /
    • 2008
  • A set of modal parameters of a stay-cable have been extracted fi:on a moving picture captured by a digital camera supported by shaking hands. It is hard to identify the center of targets attached on the cable surface from the blurred cable motion image, because of the high speed motion of cable, low sampling frequency of camera, and the shaking effect of camera. This study proposes a multi-template matching algorithm to resolve such difficulties. In addition, a sensitivity-based system identification algorithm is introduced to extract the natural frequencies and damping ratios from the ambient cable vibration data. Three sets of vibration tests are conducted to examine the validity of the proposed algorithms. The results show that the proposed technique is pretty feasible for extracting modal parameters from the severely shaking motion pictures.

PMP 방식을 이용한 BGA 볼의 3차원 형상측정 시스템 (3-Dimensional Shape Measurement System for BGA Balls Using PMP Method)

  • 김효준;김준식;주효남
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.59-65
    • /
    • 2016
  • As modern electronic devices get smaller and smaller, high-resolution, large Field-Of-View (FOV), fast, and cost-effective 3-dimensional (3-D) measurement is requested more and more. In particular, defect inspection machines using machine-vision technology nowadays require 3-D inspection as well as the conventional 2-D inspection. Phase Measuring Profilometry (PMP) is one of the fast non-contact 3-D shape measuring methods currently being extensively investigated in the electronic component manufacturing industry. The PMP system is well known and is successfully applied to measuring complex surface profiles with varying reflectance properties. However, for highly reflective surfaces, such as Ball Grid Arrays (BGAs), it has difficulty accurately measuring 3-D shapes. In this paper, we propose a new fast optical system that can eliminate the highly reflective saturated regions in BGA ball images. This is achieved by utilizing four Low Intensity Grating (LIG) images together with the conventional High Intensity Grating (HIG) images. Extensive experiments using BGA samples show a repeatability of under ${\pm}20um$ in standard deviation, which is suitable for most 3-D shape measurements of BGAs.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.

대면적 대상물 변위계측을 위한 스테레오 카메라 3차원 DIC 시스템 기초설계 및 검증에 관한 연구 (Design and Verification of 3D Digital Image Correlation Systems for Measurement of Large Object Displacement Using Stereo Camera)

  • 고영훈;서승환;임현성;김태렬;정문경
    • 화약ㆍ발파
    • /
    • 제38권2호
    • /
    • pp.1-12
    • /
    • 2020
  • 이미지 영상 상관법(DIC)은 대상물의 변위, 변형을 측정하기 위해 잘 확립된 방법이라 할 수 있다. 스테레오 카메라를 이용한 3차원 DIC 시스템은 기계산업 분야에서 재료의 변형 등을 측정하기 위해서 개발된 방법이다. 3차원 DIC 시스템을 지반 및 구조물의 변위측정 등을 위해 적용하는 부분에서의 문제는 대상물의 면적이 매우 크다는 것이 중요한 해결사항이다. DIC 알고리즘에는 대상 영역(FOV)에 대한 스케일링 기능이 있지만, 단일 카메라 시스템으로는 높은 정밀도의 시스템을 구현할 수 없다. 본 연구에서는 설정 대상물 면적(30m×20m)에서 0.5mm의 z변위 정밀도로 측정 할 수 있는 3차원 DIC 시스템의 스테레오 비전 조건을 실험을 통하여 제시하였다.

청소년을 위한 블렌디드러닝 기반 온라인 자기주도학습능력 종합진단검사 도구 개발 (Development of a Blended-learning based Online Self-directed Learning Ability Measurement Scale for Youth)

  • 김판수;최성우;강형구;전규태;전민경
    • 디지털융복합연구
    • /
    • 제15권4호
    • /
    • pp.1-11
    • /
    • 2017
  • 본 연구의 목적은 청소년들의 자기주도학습 능력 향상을 위한 SMMIS 모형 기반의 온라인 종합진단검사 도구를 개발하는 것이다. 이를 위해 문헌 분석 및 전문가 검토를 거쳐 초 중학생용과 고등학생용 검사 문항을 개발하였다. 아울러 해석 규준 설정을 위해 총 1,626명의 초, 중, 고등학생을 대상으로 검사를 실시하였다. 그 결과를 토대로 블렌디드러닝 기반 온라인 자기주도학습 종합진단검사 시스템을 개발하였다. 아울러 청소년 대상 블렌디드러닝 기반 온라인 종합진단검사 결과의 구체적 활용 방안과 향후 보완 및 후속 연구 방향에 대해 논의하였다.

Exploration of temperature effect on videogrammetric technique for displacement monitoring

  • Zhou, Hua-Fei;Lu, Lin-Jun;Li, Zhao-Yi;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • 제25권2호
    • /
    • pp.135-153
    • /
    • 2020
  • There has been a sustained interest towards the non-contact structural displacement measurement by means of videogrammetric technique. On the way forward, one of the major concerns is the spurious image drift induced by temperature variation. This study therefore carries out an investigation into the temperature effect of videogrammetric technique, focusing on the exploration of the mechanism behind the temperature effect and the elimination of the temperature-caused measurement error. 2D videogrammetric measurement tests under monotonic or cyclic temperature variation are first performed. Features of measurement error and the casual relationship between temperature variation and measurement error are then studied. The variation of the temperature of digital camera is identified as the main cause of measurement error. An excellent linear relationship between them is revealed. After that, camera parameters are extracted from the mapping between world coordinates and pixels coordinates of the calibration targets. The coordinates of principle point and focal lengths show variations well correlated with temperature variation. The measurement error is thought to be an outcome mainly attributed to the variation of the coordinates of principle point. An approach for eliminating temperature-caused measurement error is finally proposed. Correlation models between camera parameters and temperature are formulated. Thereby, camera parameters under different temperature conditions can be predicted and the camera projective matrix can be updated accordingly. By reconstructing the world coordinates with the updated camera projective matrix, the temperature-caused measurement error is eliminated. A satisfactory performance has been achieved by the proposed approach in eliminating the temperature-caused measurement error.

컴퓨터비젼을 이용한 알루미늄 캔재 이어링률 자동 측정 시스템 개발 (Development of an Auto Measuring System for the Earing Rate of Aluminum CAN Using Computer Vision)

  • 이용중;김형조;이양범
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.288-292
    • /
    • 2003
  • The main purpose of this paper is the development of the system which measures the earing rate of aluminum CAN with the CCD camera. In order to optimize imput image, the image object was segregated and the position of the image grasped. In the pre-processing the edges were detected by the Robert mask after improving the definition of image by the histogram equalization. The height of four each ear and angles which occur due to the characteristics of the aluminum CAN are measured manually with the digital vernier calipers in the industrial ground and in the case of the velocity, these require 30 seconds at least by three times measurement per height of one direction of the aluminum. But it took 0.02 seconds when this system was applied. Therefore this system is proven the satisfactory efficiency and reliability as compared to the control result of in industrial ground.

  • PDF

최단거리 최소제곱법을 이용한 측정점군으로부터의 곡면 자동탐색 (Surface Type Detection and Parameter Estimation in Point Cloud by Using Orthogonal Distance Fitting)

  • 안성준
    • 한국CDE학회논문집
    • /
    • 제14권1호
    • /
    • pp.10-17
    • /
    • 2009
  • Surface detection and parameter estimation in point cloud is a relevant subject in CAD/CAM, reverse engineering, computer vision, coordinate metrology and digital factory. In this paper we present a software for a fully automatic surface detection and parameter estimation in unordered, incomplete and error-contaminated point cloud with a large number of data points. The software consists of three algorithmic modules each for object identification, point segmentation, and model fitting, which work interactively. Our newly developed algorithms for orthogonal distance fitting(ODF) play a fundamental role in each of the three modules. The ODF algorithms estimate the model parameters by minimizing the square sum of the shortest distances between the model feature and the measurement points. We demonstrate the performance of the software on a variety of point clouds generated by laser radar, computer tomography, and stripe-projection method.