• Title/Summary/Keyword: Digital terrain analysis

Search Result 215, Processing Time 0.023 seconds

Analysis on the Topographic Change in the West Coast Using Landsat Image (Landsat 영상을 이용한 서해안 지형 변화 분석)

  • Kang, Joon-Mook;Kang, Young-Mi;Lee, Ju-Dae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.2 s.32
    • /
    • pp.13-20
    • /
    • 2005
  • Upon the request of balanced development of the country and making inroads into the continent of China the development of the west coast was begun in the late 1980s, which has been being continued till recently under the blueprint of making the western part of the capital region to be the hub of northeastern Asia. As more lively development is expected to continue in the area, there are many occurrences of change in topology and terrain in the west coast. This study was done to detect the topographic and terrain change of the vicinity of the west coast. To make the basic map of the change in topology and terrain, the mosaic images were made using landsat images. The accuracy of the images was examined by comparing them with GCP through 1:25,000's digital map. After that, among the resultant images of the 1970s and 2000s, those of Sihwa, Hwaong and Ansan, the lands reclaimed by drainage were compared to observe the change in the area. From the results, it was concluded that, in case of the land the topological change was not so big due to the development in the reclaimed land or the bare land, and the area of agriculture and downtown increased, the drainage and bare land area decreased by comparing the change of land use.

  • PDF

Case Study Research in Earthwork Site Digitization for Smart Construction (스마트 건설을 위한 토공현장 디지털화 적용성 검증)

  • Park, Jae-woo;Kim, Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.529-536
    • /
    • 2019
  • Recently, various efforts have been tried in the construction industry to improve productivity by applying the fourth industrial revolution technology. Among the various technologies, researches for the automation and digitization of earthworks are being carried out steadily. As the interest in the benefits of digitalization of the earthwork field has increased, there have been more cases of technology development and application for digitalization of the earthwork field. However, there is not enough case study to present the analysis results of application cases. The purpose of this study is to verify the feasibility of applying the digitization technology of the earthwork in actual worksite. In order to digitize the worksite terrain, it is required the process of field measurement, measurement data registration, earthwork information input, and analysis cell generation. Particularly, it is possible to achieve information-enabled digitization rather than digitalizing only the shape through the input of the earthwork information and the analysis cell generation. By using the digital information of the earthwork field, it is possible to visually recognize the change of the earthwork field, so that it is expected to enhance the worker 's understanding and to be highly applicable to the management work. It is expected that the digital technology of earthwork site will be able to know the precise amount of volume change of the earthwork numerically, and it will be highly applicable to construction management.

An Analysis of Terrain Slope and Drainage Basin Area by DEM Grid Size (DEM 격자크기에 따른 지형경사와 배수유역 면적의 분석)

  • 양인태;김연준;유영걸
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.303-311
    • /
    • 2002
  • Recently, the research that analyze topography parameters that need in hydrology analysis using GIS techniques is achieved. DEM that is used in topography analysis can be constructed effectively using contour data of digital map. Therefore, DEM's applicability is increasing gradually in several fields. In this study, DEM of 20∼l00m grid size was applied PYONGCHANG river and JUBANG river basin to analyze what effect DEM grid size causes about slope and drainage watershed at topography parameter extraction. This study drew a regression equation about slope change by DEM grid size. As a result, according as DEM grid size increases, slope decreases, and basin area could know that is not change almost.

돌발홍수 모니터링 및 예측 모형을 이용한 예측(F2MAP)태풍 루사에 의한 양양남대천 유역의 돌발홍수 모니터링

  • Kim, Byung-Sik;Hong, Jun-Bum;Choi, Kyu-Hyun;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1145-1149
    • /
    • 2006
  • The typhoon Rusa passed through the Korean peninsula from the west-southern part to the east-northern part in the summer season of 2002. The flash flood due to the Rusa was occurred over the Korean peninsula and especially the damage was concentrated in Kangnung, Yangyang, Kosung, and Jeongsun areas of Kangwon-Do. Since the latter half of the 1990s the flash flood has became one of the frequently occurred natural disasters in Korea. Flash floods are a significant threat to lives and properties. The government has prepared against the flood disaster with the structural and nonstructural measures such as dams, levees, and flood forecasting systems. However, since the flood forecasting system requires the rainfall observations as the input data of a rainfall-runoff model, it is not a realistic system for the flash flood which is occurred in the small basins with the short travel time of flood flow. Therefore, the flash flood forecasting system should be constructed for providing the realistic alternative plan for the flash flood. To do so, firstly, Flash Flood Monitoring and Prediction (FFMP) Model must be developed suitable to Korea terrain. In this paper, We develop the FFMP model which is based on GIS, Radar techniques and hydro-geomorphologic approaches. We call it the F2MAP model. F2MAP model has three main components (1) radar rainfall estimation module for the Quantitative Precipitation Forecasts (QPF), (2) GIS Module for the Digital terrain analysis, called TOPAZ(Topographic PArametiZation), (3) hydrological module for the estimation of threshold runoff and Flash Flood Guidance(FFG). For the performance test of the model developed in this paper, F2MAP model applied to the Kangwon-Do, Korea, where had a severe damage by the Typhoon Rusa in August, 2002. The result shown that F2MAP model is suitable for the monitoring and the prediction of flash flood.

  • PDF

Application of LAHARZ for Lahar Modeling in Mt. Baekdusan (백두산 분화로 인한 화산이류 모델링를 위한 LAHARZ의 적용 연구)

  • Jung, Kwang-Jun;Kim, Hyun-Jun;Kim, Sang-Hyun;Lee, Khil-Ha
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.507-514
    • /
    • 2013
  • Recent reports about Mt. Baekdusan indicate an increasing potential of lahar generation due to volcanic activity around Lake Cheonji. In this study, we model lahar assuming volcanic activity underneath the caldera located at the top of Mt. Baekdusan. Lahar-inundation hazard zones (LAHARZ), software that runs within a Geographic Information System (GIS), was used for lahar modeling in various conditions of digital terrain resolution and model parameters. The sensitivity analysis of model parameters shows that both sink threshold and terrain resolution have limited impact on the modeling result. Combinations of stream threshold and resolution indicate distinctive distributions in stream delineation. The limitations of LAHARZ seem to largely be associated with the assumption of an existing flow generation algorithm. However, the impact of different resolutions on the final lahar extent was found to be small.

Soil Moisture Monitoring at a Hillslope Scale Considering Spatial-Temporal Characteristics (봄, 가을철 시공간적 특성을 고려한 사면에서의 토양수분 거동파악)

  • Oh Kyoung-Joon;Lee Hye-Sun;Kim Do-Hoon;Kim Hyun-Jun;Kim Nam-Won;Kim Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.605-615
    • /
    • 2006
  • In order to analyze movement of soil moisture, Time Domain Reflectometry(TDR) with multiplex system has been installed at the Bumreunsa hillslope of Sulmachun Watershed to configure spatial-temporal variation pattern considering seasonal characteristic. An intensive surveying was performed to build a refined digital elevation model(DEM) and flow determination algorithms with inverse surveying have been applied to establish an efficient soil moisture monitoring system. Soil moisture data were collected through an intensive and long term monitoring 380 hrs in November of 2003 and 1037 hrs in May and June of 2004. Soil moisture data shows corresponding variation characteristics of soil moisture on the up slope, buffer, main channel zones of the hillslope which were classified from terrain analysis. Measured soil moisture data were discussed in conjunction with flow characteristic through terrain analysis. Regardless season, immediate responses of soil moisture about rainfall looks similar but recession and recharge are primary characteristics of intermediate soil moisture variation for spring to summer and fall to winter season, respectively.

A Study on the Accuracy of Calculating Slopes for Mountainous Landform in Korea Using GIS Software - Focused on the Contour Interval of Source Data and the Resolution - (GIS Software를 이용한 한국 산악 지형의 경사도 산출 정확도에 관한 연구 -원자료의 등고선 간격과 해상력을 중심으로-)

  • 신진민;이규석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The DTM(Digital Terrain Model) in GIS(Geographical Information System) shows the elevation from interpolation using data points surveyed. In panoramic flat landform, pixel size, resolution of source data may not be the problem in using DTM However, in mountainous landform like Korea, appropriate resolution accuracy of source data are important factors to represent the topography concerned. In this study, the difference in contour interval of source data, the resolution after interpolation, and different data structures were compared to figure out the accuracy of slope calculation using DTM from the topographic maps of Togyusan National Park Two types of GIS softwares, Idrisi(grid) ver. 2.0 using the altitude matrices and ArcView(TIN) ver. 3.0a using TIN were used for this purpose. After the analysis the conclusions are as follows: 1) The coarser resolution, the more smoothing effect inrepresenting the topography. 2) The coarser resolution the more difference between the grid-based Idrisi and the TIN-based ArcView. 3) Based on the comparison analysis of error for 30 points from clustering, there is not much difference among 10, 20, 30 m resolution in TIM-based Airview ranging from 4.9 to 6.2n However, the coarser resolution the more error for elevation and slope in the grid-based Idrisi. ranging from 6.3 to 10.9m. 4) Both Idrisi and ArcView could net consider breaklines of lanform like hilltops, valley bottoms.

  • PDF

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios - Connecting Green Network Across the North and South in Seoul - (서울 도시계획 정책을 적용한 기후영향평가 - 남북녹지축 조성사업을 대상으로 -)

  • Kwon, Hyuk-Gi;Yang, Ho-Jin;Yi, Chaeyeon;Kim, Yeon-Hee;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.2
    • /
    • pp.134-153
    • /
    • 2015
  • When making urban planning, it is important to understand climate effect caused by urban structural changes. Seoul city applies UPIS(Urban Plan Information System) which provides information on urban planning scenario. Technology for analyzing climate effect resulted from urban planning needs to developed by linking urban planning scenario provided by UPIS and climate analysis model, CAS(Climate Analysis Seoul). CAS develops for analyzing urban climate conditions to provide realistic information considering local air temperature and wind flows. Quantitative analyses conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod(Meteorology and atmospheric Photochemistry Meso-scale model). In order to reflect land cover and elevation of the latest information, CAS used to highly accurate raster data (1m) sourced from LiDAR survey and KOMPSAT-2(KOrea Multi-Purpose SATellite) satellite image(4m). For more realistic representation of land surface characteristic, DSM(Digital Surface Model) and DTM(Digital Terrain Model) data used as an input data for CFD(Computational Fluid Dynamics) model. Eight inflow directions considered to investigate the change of flow pattern, wind speed according to reconstruction and change of thermal environment by connecting green area formation. Also, MetPhoMod in CAS data used to consider realistic weather condition. The result show that wind corridors change due to reconstruction. As a whole surface temperature around target area decreases due to connecting green area formation. CFD model coupled with CAS is possible to evaluate the wind corridor and heat environment before/after reconstruction and connecting green area formation. In This study, analysis of climate impact before and after created the green area, which is part of 'Connecting green network across the north and south in Seoul' plan, one of the '2020 Seoul master plan'.

Suitability Analysis of Onshore Wind Farm using GIS Program and Digital maps (GIS 및 수치지도를 활용한 육상풍력발전단지 적지분석)

  • Park, Jae-Hyeong;Lee, Hwa-Woon;Kim, Dong-Hyuk;Kim, Hyun-Goo;Kim, Tae-Wook
    • Journal of Environmental Science International
    • /
    • v.23 no.11
    • /
    • pp.1919-1927
    • /
    • 2014
  • In order to decide the location of appropriate onshore wind farm with higher potential wind energy, several decision processes using Geographic Information System (GIS) including Digital Elevation Map (DEM) were proposed and we also estimated the wind resources through the proposed decision process. Decision process consists with three steps. First step is excluding inappropriate location geographically using DEM data including SRTM (Shuttle Radar Topography Mission) terrain data, landslide, land-use, roadway, and forest road data. And the second step of decision process is consideration of the difficulty caused by the natural environmental problem. This step is carried out using ECVAM (Environmental Conservation Value Assessment Map) data. And final step is determination of the most suitable location through the Moving Suitability Identification Method (MSIM) based on the moving potentially estimated wind resources area. Proposed decision process was applied over the Korean Peninsula. Wind resource potential estimated by the first and the second step is cases shows 35.09 GW and 7.17 GW, respectively, and the total evaluated energy from the all proposed step were 0.43 GW and 1.87 GW for the 3 km and 1.5 km geographical grid size, respectively.

Analysis of Geometric and Spatial Image Quality of KOMPSAT-3A Imagery in Comparison with KOMPSAT-3 Imagery

  • Erdenebaatar, Nyamjargal;Kim, Jaein;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • This study investigates the geometric and spatial image quality analysis of KOMPSAT-3A stereo pair. KOMPSAT-3A is, the latest satellite of KOMPSAT family, a Korean earth observation satellite operating in optical bands. A KOMPSAT-3A stereo pair was taken on 23 November, 2015 with 0.55 m ground sampling distance over Terrassa area of Spain. The convergence angle of KOMPSAT-3A stereo pair was estimated as $58.68^{\circ}$. The investigation was assessed through the evaluation of the geopositioning analysis, image quality estimation and the accuracy of automatic Digital Surface Model (DSM) generation and compared with those of KOMPSAT-3 stereo pair with the convergence angle of $44.80^{\circ}$ over the same area. First, geopositioning accuracy was tested with initial rational polynomial coefficients (RPCs) and after compensating the biases of the initial RPCs by manually collected ground control points. Then, regarding image quality, relative edge response was estimated for manually selected points visible from two stereo pairs. Both of the initial and bias-compensated positioning accuracy and the quality assessment result expressed that KOMPSAT-3A images showed higher performance than those of KOMPSAT-3 images. Finally, the accuracy of DSMs generated from KOMPSAT-3A and KOMPSAT-3 stereo pairs were examined with respect to the reference LiDAR-derived DSM. The various DSMs were generated over the whole coverage of individual stereo pairs with different grid spacing and over three types of terrain; flat, mountainous and urban area. Root mean square errors of DSM from KOMPSAT-3A pair were larger than those for KOMPSAT-3. This seems due to larger convergence angle of the KOMPSAT-3A stereo pair.