• Title/Summary/Keyword: Digital sliding mode control

Search Result 57, Processing Time 0.029 seconds

The Output Voltage Control of Buck Type DC-DC Converter Using Sliding Mode and Neural Controller (슬라이딩 모드와 Neural network 제어기를 이용한 Buck type DC-DC 컨버터의 출력전압제어)

  • Hwang, Gye-Ho;Nam, Seung-Sik;Kim, Dong-Hee;Bae, Sang-June
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.95-100
    • /
    • 2004
  • A control alogorithm using sliding mode and neural network for Buck type DC-DC converter is presented. Also, we conform a rightness the proposal method by comparing a theoretical values and experimental values obtained from experiment using DSP(digital signal processor). Performance comparisons made with the general hysteresis controller clearly bring out the superior performance of the proposal neural network controller. This paper will be applied to other power conversion system using the proposal neural network controller.

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Novel Quasi-Sliding Mode Speed Controller for Induction Motor (유도전동기 속도제어를 위한 개선된 근사 슬라이딩 모드 제어기)

  • Cha, Jung-Hwa;Kim, Sang-Woo;Kim, Jun-Hwan;Moon, Hak-Yong;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.512-514
    • /
    • 1997
  • In this paper, a quasi-sliding mode (QSM) control with load observer is discussed for field-oriented induction motor speed drive. The proposed QSM control, which is defined in the discrete time domain and act with the load torque observer eliminating impacted load torque, restricts the bound of chattering within specified band. With this strategy, we can obtain fast dynamics without overshoot and robustness to parameter variation and disturbance. The proposed scheme is verified by digital simulation.

  • PDF

Position Control of Induction Motor using Variable Structure Vector Control (가변구조 벡터제어를 이용한 유도전동기의 위치제어)

  • Lee, Y.J.;Kim, H.J.;Son, Y.D.;Kwon, W.J.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1218-1220
    • /
    • 1992
  • This paper presents the three section sliding mode control algorithm based on variable structure current controller design in a synchronous frame and indirect field oriented control method, and applies it to the position control of induction motor. This control scheme solves the problem of robustness loss during the reaching phase that occurs in a conventional VSC strategy, and ensures the stable sliding mode and robustness enhancement throughout an entire response. As the performance of a VSI fed induction motor drives depends on the characteristics of inner loop current controller, it is desired that the current controller have the fast tracking and robust nature. Therefore, we introduced the voltage mapping table based on the concept of voltage space vector for variable structure current control, and implemented fully digital control system using 16-bit microcontroller with on-chip peripherals without additional processing circuits. Simulation and experimental results confirm the validity of this control scheme for robust AC servo drive system of VSI fed induction motor.

  • PDF

Experiments on Robust Nonlinear Control for Brush Contact Force Estimation (연마 브러시 접촉력 산출을 위한 비선형 강건제어기 실험)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.3
    • /
    • pp.41-49
    • /
    • 2010
  • Two promising control candidates have been selected to test the sinusoidal reference tracking performance for a brush-type polishing machine having strong nonlinearities and disturbances. The controlled target system is an oscillating mechanism consisting of a common positioning stage of one degree-of-freedom with a screw and a ball nut driven by a servo motor those can be obtained commercially. Beside the strong nonlinearity such as stick-slip friction, the periodic contact of the polishing brush and the work piece adds an external disturbance. Selected control candidates are a Sliding Mode Control (SMC) and a variant of a feedback linearization control called Smooth Robust Nonlinear Control (SRNC). A SMC and SRNC are selected since they have good theoretical backgrounds, are suitable to be implemented in a digital environment and show good disturbance and modeling uncertainty rejection performance. It should be also noted that SRNC has a nobel approach in that it uses the position information to compensate the stickslip friction. For both controllers analytical and experimental studies have been conducted to show control design approaches and to compare the performance against the strong nonlinearity and the disturbances.

A Study on the Development of Polishing Robot System Attached to Machining Center for Curved Surface Die (곡면금형 연마를 위한 머시닝센터 장착형 연마로봇 시스템 개발에 관한 연구)

  • Lee, Min-Cheol;Ha, Deok-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.163-177
    • /
    • 1999
  • Polishing work for a curved surface die demands simple and repetitive operations and requires much time while it demands also high precision. Therefore it is operated by a skilled worker in handiwork. However the workers avoid gradually a polishing work because of the poor environmental conditions such as dust and noise. In order to reduce the polishing time and to alleviate the problem of shortage of skilled workers, an automatic polishing robot system which is composed of a polishing robot with two degrees of freedom motion and pneumatic system is developed, and it is attached to machining center with three degrees of freedom. The system keeps the polishing tool vertically on the surface of die and maintains constant pneumatic pressure. The polishing robot with DSP(digital signal processor) controller is controlled by sliding mode control. A synchronization between machining center and polishing robot is accomplished by using M code of machining center. A performance experiment for polishing work is executed by the developed automatic polishing robot system. The result shows that the developed automatic polishing robot has a good performance and well polished workpiece surface is obtained.

  • PDF

A study on chattering reduction in the position control of D.C servo-motor using sliding mode (슬라이딩 모우드를 이용한 D.C servo-motor의 위치제어에 있어 chattering reduction에 관한 연구)

  • 천희영;박귀태;강대륜
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.580-585
    • /
    • 1986
  • This paper deals with "chattering" problem in variable structure control system. For digital computer control, chattering reduction algorithm in Analog-VSC is extended to Discrete-VSC. The proposed algorithm is applied to position control of D.C Servo Motor by using 6502 .mu.-processor. The improved transient response, as well as a considerable reduction of chattering, is illustrated experimentally.imentally.

  • PDF

Control for Optical Image Stabilization System in Digital Cameras (디지털 카메라용 이미지 안정화 시스템 제어)

  • Cho, Ju-Yeon;Cho, Woo-Jong;Park, Jung-Ho;Kim, Kyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.411-414
    • /
    • 2010
  • As high quality image is required for digital cameras in recent use, the image stabilization technique has drawn much attention to prevent image degradation from shaky disturbance by users. In this paper, the optical image stabilization (OIS) system for DSLR (Digital Single Lens Reflex) camera is considered. First, the analytic model of an OIS system is presented to demonstrate the mechanism of image destabilization due to unknown disturbance that causes blurry images on CCD sensor. Then, to enhance the stabilization performance, a sliding mode control based on the min-max nonlinear control is introduced. Through the experiments and simulations, the effectiveness of the proposed method will be verified.

Development of Digital 3D Real Object Duplication System and Process Technology (디지털 3차원 실물복제기 시스템 및 공정기술 개발)

  • Lee Won-Hee;Ahn Young-Jin;Jang Min-Ho;Choi Kyung-Hyun;Kim Dong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.183-190
    • /
    • 2006
  • Digital 3D Real Object Duplication System (RODS) consists of 3D Scanner and Solid Freeform Fabrication System (SFFS). It is a device to make three-dimensional objects directly from the drawing or the scanning data. In this research, we developed an office type SFFS based on Three Dimensional Printing Process and an industrial SFFS using Dual Laser. An office type SFFS applied sliding mode control with sliding perturbation observer (SMCSPO) algorithm for control of this system. And we measured process variables about droplet diameter measurement and powder bed formation etc. through experiments. In case of industrial type SFFS, in order to develop more elaborate and speedy system for large objects than existing SLS process, this study applies a new Selective Dual-Laser Sintering (SDLS) process and 3-axis Dynamic Focusing Scanner for scanning large area instead of the existing f lens. In this process, the temperature has a great influence on sintering of the polymer. Also the laser parameters are considered like that laser beam power, scan speed, and scan spacing. Now, this study is in progress to evaluate the effect of experimental parameters on the sintering process.

A Time-Varying Gain Super-Twisting Algorithm to Drive a SPIM

  • Zaidi, Noureddaher;Jemli, Mohamed;Azza, Hechmi Ben;Boussak, Mohamed
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.955-963
    • /
    • 2013
  • To acquire a performed and practical solution that is free from chattering, this study proposes the use of an adaptive super-twisting algorithm to drive a single-phase induction motor. Partial feedback linearization is applied before using a super-twisting algorithm to control the speed and stator currents. The load torque is considered an unknown but bounded disturbance. Therefore, a time-varying switching gain that does not require prior knowledge of the disturbance boundary is proposed. A simple sliding surface is formulated as the difference between the real and desired trajectories obtained from the indirect rotor flux oriented control strategy. To illustrate the effectiveness of the proposed control structure, an experimental setup around a digital signal processor (dS1104) is developed and several tests are performed.