• Title/Summary/Keyword: Digital pathology

Search Result 122, Processing Time 0.023 seconds

Effects of Saururus chinensis BAILL Extract in Rats with Experimentally Chronic Constipation: An application of Clinical Pathology and Digital Image Processing

  • Cho, Min-Seok;Choi, Seokyoun;Lee, Gilhyun;Ju, Mi Ha;Choi, Seok-Cheol
    • Biomedical Science Letters
    • /
    • v.25 no.4
    • /
    • pp.339-347
    • /
    • 2019
  • Saururus chinensis (SC) belongs to the dicotyledonous plants, and its roots, leaves and flowers are white, so it is named three hundred and seconds. It is mainly distributed in Korea, China and Japan. In Korea, it is a native plant distributed in Jejudo and Jirisan areas. It has been known to improve blood circulation, anticarcinogenic effects and purge. However, studies of the efficacy on digestive system is few. This study was conducted to evaluate the effects of oral administered-SC extract in loperimide-induced constipation rats. The amount, weight and water content of the stools were measured. The number and type of stools in the large intestines were measured, and the amount of intestinal mucus was analyzed by serological analysis and histologic special staining. The severity of constipation in SC groups was significantly less than that in control group (non-SC rats). Digital Image processing also showed weaker inflammation on the large intestines of SC groups than that of control group (non-SC group). Especially, with increased dose dependent manner of SC extract, the amount and integrity of intestinal mucus increased. These results suggest that SC extract may prevent the symptoms of constipation.

Detection and Quantification of Apple Stem Grooving Virus in Micropropagated Apple Plantlets Using Reverse-Transcription Droplet Digital PCR

  • Kim, Sung-Woong;Lee, Hyo-Jeong;Cho, Kang Hee;Jeong, Rae-Dong
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.417-422
    • /
    • 2022
  • Apple stem grooving virus (ASGV) is a destructive viral pathogen of pome fruit trees that causes significant losses to fruit production worldwide. Obtaining ASGV-free propagation materials is essential to reduce economic losses, and accurate and sensitive detection methods to screen ASGV-free plantlets during in vitro propagation are urgently necessary. In this study, ASGV was sensitively and accurately quantified from in vitro propagated apple plantlets using a reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assay. The optimized RT-ddPCR assay was specific to other apple viruses, and was at least 10-times more sensitive than RT-real-time quantitative PCR assay. Furthermore, the optimized RT-ddPCR assay was validated for the detection and quantification of ASGV using micropropagated apple plantlet samples. This RT-ddPCR assay can be utilized for the accurate quantitative detection of ASGV infection in ASGV-free certification programs, and can thus contribute to the production of ASGV-free apple trees.

Development and Application of Reverse Transcription Nanoplate-Based Digital PCR Assay for Sensitive and Accurate Detection of Rice Black-Streaked Dwarf Virus in Cereal Crops

  • Hyo-Jeong Lee;Hae-Jun Kim;Sang-Min Kim;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.40 no.4
    • /
    • pp.408-413
    • /
    • 2024
  • The emergence of rice black-streaked dwarf virus (RBSDV) poses a significant threat to global cereal crop cultivation, necessitating the urgent development of reliable detection and quantification techniques. This study introduces a reliable approach for the precise and sensitive quantification of the RBSDV in cereal crop samples, employing a reverse transcription digital polymerase chain reaction (RT-dPCR) assay. We assessed the specificity and sensitivity of the RT-dPCR assay proposed for precise RBSDV detection and quantification. Our findings demonstrate that RT-dPCR was specific for detection of RBSDV, with no cross-reactivity observed with other viruses infecting cereal crops. The RT-dPCR sensitivity was over 10 times that of RT-quantitative PCR (RT-qPCR). The detection limit of RT-dPCR was 0.096 copies/㎕. In addition, evaluation of RT-dPCR assay with field samples was conducted on 60 different cereal crop samples revealed that RT-dPCR (45/60) exhibited superior accuracy compared with RT-qPCR (23/60). In this study, we present a specific and accurate RT-dPCR assay for the detection and quantification of RBSDV.

Digital Holographic Microscopy with extended field of view using tool for generic image stitching

  • Stepien, Piotr;Korbuszewski, Damian;Kujawinska, Malgorzata
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • This paper describes in detail the processing path leading to successful phase images stitching in digital holographic microscope for the extension of the field of view. It applies FIJI Grid/Collection Stitching Plugin, which is a general tool for images stitching, non-specific for phase images. The FIJI plugin is extensively supported by aberration and phase offset correction. Comparative analysis of different aberration correction methods and data processing strategies is presented, together with the critical analysis of their applicability. The proposed processing path provides good background for statistical phase analysis of cell cultures and digital phase pathology.

Artificial Intelligence in the Pathology of Gastric Cancer

  • Sangjoon Choi;Seokhwi Kim
    • Journal of Gastric Cancer
    • /
    • v.23 no.3
    • /
    • pp.410-427
    • /
    • 2023
  • Recent advances in artificial intelligence (AI) have provided novel tools for rapid and precise pathologic diagnosis. The introduction of digital pathology has enabled the acquisition of scanned slide images that are essential for the application of AI. The application of AI for improved pathologic diagnosis includes the error-free detection of potentially negligible lesions, such as a minute focus of metastatic tumor cells in lymph nodes, the accurate diagnosis of potentially controversial histologic findings, such as very well-differentiated carcinomas mimicking normal epithelial tissues, and the pathological subtyping of the cancers. Additionally, the utilization of AI algorithms enables the precise decision of the score of immunohistochemical markers for targeted therapies, such as human epidermal growth factor receptor 2 and programmed death-ligand 1. Studies have revealed that AI assistance can reduce the discordance of interpretation between pathologists and more accurately predict clinical outcomes. Several approaches have been employed to develop novel biomarkers from histologic images using AI. Moreover, AI-assisted analysis of the cancer microenvironment showed that the distribution of tumor-infiltrating lymphocytes was related to the response to the immune checkpoint inhibitor therapy, emphasizing its value as a biomarker. As numerous studies have demonstrated the significance of AI-assisted interpretation and biomarker development, the AI-based approach will advance diagnostic pathology.

User Interface Application for Cancer Classification using Histopathology Images

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • User interface for cancer classification system is a software application with clinician's friendly tools and functions to diagnose cancer from pathology images. Pathology evolved from manual diagnosis to computer-aided diagnosis with the help of Artificial Intelligence tools and algorithms. In this paper, we explained each block of the project life cycle for the implementation of automated breast cancer classification software using AI and machine learning algorithms to classify normal and invasive breast histology images. The system was designed to help the pathologists in an automatic and efficient diagnosis of breast cancer. To design the classification model, Hematoxylin and Eosin (H&E) stained breast histology images were obtained from the ICIAR Breast Cancer challenge. These images are stain normalized to minimize the error that can occur during model training due to pathological stains. The normalized dataset was fed into the ResNet-34 for the classification of normal and invasive breast cancer images. ResNet-34 gave 94% accuracy, 93% F Score, 95% of model Recall, and 91% precision.

Prediction of Deficiency Pattern in Diabetic Patients Using Multi-frequency Bioimpedance Resistance (다주파수 생체임피던스 저항을 이용한 당뇨병 환자의 허증 변증 예측)

  • Kim, Kahye;Kim, Seul Gee;Cha, Jiyun;Yoo, Ho-Ryong;Kim, Jaeuk U.
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.3
    • /
    • pp.94-99
    • /
    • 2022
  • The discovery of biomarkers related to pattern identification (PI), the core diagnostic theory of Korean medicine (KM), is one of the methods that can provide objective and reliable evidence by applying PI to clinical practice. In this study, 40 diabetic patients and 41 healthy control subjects recruited from the Korean medicine clinic were examined to determine the human electrical response related to the deficiency pattern, a representative pattern of diabetes. Qi-Blood-Yin-Yang deficiency pattern scores, which are representative deficiency patterns for diabetes mellitus, were obtained through a questionnaire with verified reliability and validity, and the human electrical response was measured non-invasively using a bioimpedance meter. In ANCOVA analysis using gender as a covariate, the 5 kHz frequency resistance and 5-250 kHz frequency reactance were significantly lower in the diabetic group than in non-diabetic control group. In addition, the multiple regression analysis showed a positive correlation (R2=0.11~0.19) between the Yang deficiency pattern score and resistance value for the diabetic group; the correlation was higher at higher frequencies of 50kHz (R2=0.18) and 250kHz (R2=0.19) compared to 5kHz(R2=0.11). In contrast, there was no such significant association in the control group. It implies that bioimpedance resistance measured at finite frequencies may be useful in predicting Yang deficiency, which is closely related to diabetic complications by reflecting the decrease in body water content and metabolism. In the future, large-scale planned clinical studies will be needed to identify biomarkers associated with different types of PI in diabetes.

Case Report of Raynaud's Disease Treated with Prescription of Modified Woogyu-yeum (우귀음가미방(右歸飮加味方) 투여로 호전된 레이노 병 환자 1례)

  • Ha, Ye-Jin;Cho, Mun-Young;Jang, Won-Seok;Eun, Seon-Hye;Shin, Yong-Jeen;Shin, Sun-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.908-913
    • /
    • 2011
  • Major symptoms of Raynaud's Disease are pain, edema, cyanosis, and redness of hands, feet, nose, and etc. The purpose of this report is to show the curative effect of herbal medicine for Raynaud's Disease. We provided Prescription of Modified Woogyu-yeum(Yougui-yinjiaweifang ) to patient who was diagnosed with Raynaud's Disease three times a day for 22 days. We observed changes of symptoms through Digital Infrared Thermographic Imaging, taking photos of both hands, and collecting the survey answered by the patient. Modified Woogyu-yeum reduced pain, edema, and redness of both hands. The frequency of cyanosis decreased after the treatment. Digital Infrared Thermographic Imaging proved a rise in temperature of fingertips after the treatment. In conclusion, Modified Woogyu-yeum showed the possibility of effect on Raynaud's Disease.

A Study of Digital Image Analysis of Chromatin Texture for Discrimination of Thyroid Neoplastic Cells (갑상선 종양세포 식별을 위한 염색질 텍스춰의 디지탈 화상해석에 관한 연구)

  • Juhng, Sang-Woo;Lee, Jae-Hyuk;Bum, Eun-Kyung;Kim, Chang-Won
    • The Korean Journal of Cytopathology
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 1996
  • Chromatin texture, which partly reflects nuclear organization, is evolving as an important parameter indicating cell activation or transformation. In this study, chromatin pattern was evaluated by image analysis of the electron micrographs of follicular and papillary carcinoma cells of the thyroid gland and tested for discrimination of the two neoplasms. Digital grey images were converted from the electron micrographs, nuclear images, excluding nucleolus and intranuclear cytoplasmic inclusions, were obtained by segmentation; grey levels were standardized; and grey level histograms were generated. The histograms in follicular carcinoma showed Gaussian or near-Gaussian distribution and had a single peak, whereas those in papillary carcinoma had two peaks(bimodal), one at the black zone and the other at the white zone. In papillary carcinoma, the peak in the black zone represented an increased amount of heterochromatin particles and that at the white zone represented decreased electron density of euchromatin or nuclear matrix. These results indicate that the nuclei of follicular and papillary carcinoma cells differ in their chromatin pattern and the difference may be due to decondensed chromatin and/or matrix substances.

  • PDF

Digital Infrared Thermal Imaging of Crape Myrtle Leaves Infested with Sooty Mold

  • Kim, Jiyeon;Kweon, Si-Gyun;Park, Junhyung;Lee, Harim;Kim, Ki Woo
    • The Plant Pathology Journal
    • /
    • v.32 no.6
    • /
    • pp.563-569
    • /
    • 2016
  • The spatial patterns for temperature distribution on crape myrtle leaves infested with sooty mold were investigated using a digital infrared thermal imaging camera. The mean temperatures of the control and sooty regions were $26.98^{\circ}C$ and $28.44^{\circ}C$, respectively. In the thermal images, the sooty regions appeared as distinct spots, indicating that the temperatures in these areas were higher than those in the control regions on the same leaves. This suggests that the sooty regions became warmer than their control regions on the adaxial leaf surface. Neither epidermal penetration nor cell wall dissolution by the fungus was observed on the adaxial leaf surface. It is likely that the high temperature of black leaves have an increased cooling load. To our knowledge, this is the first report on elevated temperatures in sooty regions, and the results show spatial heterogeneity in temperature distribution across the leaf surface.