• Title/Summary/Keyword: Digital models

Search Result 1,692, Processing Time 0.03 seconds

Reconstructing individual hand models from motion capture data

  • Endo, Yui;Tada, Mitsunori;Mochimaru, Masaaki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • In this paper, we propose a new method of reconstructing the hand models for individuals, which include the link structure models, the homologous skin surface models and the homologous tetrahedral mesh models in a reference posture. As for the link structure model, the local coordinate system related to each link consists of the joint rotation center and the axes of joint rotation, which can be estimated based on the trajectories of optimal markers on the relative skin surface region of the subject obtained from the motion capture system. The skin surface model is defined as a three-dimensional triangular mesh, obtained by deforming a template mesh so as to fit the landmark vertices to the relative marker positions obtained motion capture system. In this process, anatomical dimensions for the subject, manually measured by a caliper, are also used as the deformation constraints.

An evaluation of validity of three dimensional digital model fabricated by dental scannable stone (치과용 스캐너 전용 석고를 이용하여 제작된 3차원 디지털 모형의 정확도 평가)

  • Kim, Ki-Baek;Kim, Su-Jin;Kim, Jae-Hong;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.35 no.1
    • /
    • pp.29-35
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the validity of digital models fabricated by dental scannable stone. Methods: Twenty same cases of stone models(maxillary full arch) were manufactured. Intercanine distance, intermolar distance, two dental arch lengths(right, left), two diagonal of dental arch lengths(right, left) were measured for comparison. Each of ten stone models were measured by digital vernier calipers and scanned by dental scanner. Ten digital models were measured by CAD program. The mean(SDs) values were compared by a Mann-Whitney U test(${\alpha}$=0.05). Results: No statistically significant differences between the two groups were found at intermolar distance, dental arch length(right)(p>0.05). However, intercanine distance, dental arch length(left) and two diagonal of dental arch lengths(right, left) were statistically significant(p<0.05). Conclusion: Stone models fabricated by dental scannable stone showed larger than digital models.

Accuracy and reliability of measurements performed using two different software programs on digital models generated using laser and computed tomography plaster model scanners

  • Camardella, Leonardo T.;Ongkosuwito, Edwin M.;Penning, E. Willemijn;Kuijpers-Jagtman, Anne Marie;Vilella, Oswaldo V.;Breuning, K. Hero
    • The korean journal of orthodontics
    • /
    • v.50 no.1
    • /
    • pp.13-25
    • /
    • 2020
  • Objective: The aim of this study was to compare the accuracy and reliability of measurements performed using two different software programs on digital models generated using two types of plaster model scanners (a laser scanner and a computed tomography [CT] scanner). Methods: Thirty plaster models were scanned with a 3Shape laser scanner and with a Flash CT scanner. Two examiners performed measurements on plaster models by using digital calipers and on digital models by using Ortho Analyzer (3Shape) and Digimodel® (OrthoProof) software programs. Forty-two measurements, including tooth diameter, crown height, overjet, overbite, intercanine and intermolar distances, and sagittal relationship, were obtained. Results: Statistically significant differences were not found between the plaster and digital model measurements (ANOVA); however, some discrepancies were clinically relevant. Plaster and digital model measurements made using the two scanning methods showed high intraclass coefficient correlation values and acceptable 95% limits of agreement in the Bland-Altman analysis. The software used did not influence the accuracy of measurements. Conclusions: Digital models generated from plaster casts by using laser and CT scanning and measured using two different software programs are accurate, and the measurements are reliable. Therefore, both fabrication methods and software could be used interchangeably.

Information Services in Hybrid Information Environments (하이브리드 정보 환경에서의 정보서비스)

    • Journal of Korean Library and Information Science Society
    • /
    • v.32 no.1
    • /
    • pp.309-328
    • /
    • 2001
  • The purpose of this study is to survey various digital library models that form basic concept of the hybrid information services and to suggest the needs of hybrid information services in digital environments as previous stage towards a building of generic information model appropriate to hybrid information environments. This study deals with the change of information service environments and information services of traditional and digital environments, Also addressed are relationships between digital library and information services. Finally. this study suggest the needs of hybrid information services in digital environments and survey various digital library models that form basic concept of the digital library models.

  • PDF

A reliable method for evaluating upper molar distalization: Superimposition of three-dimensional digital models

  • Nalcaci, Ruhi;Kocoglu-Altan, Ayse Burcu;Bicakci, Ali Altug;Ozturk, Firat;Babacan, Hasan
    • The korean journal of orthodontics
    • /
    • v.45 no.2
    • /
    • pp.82-88
    • /
    • 2015
  • Objective: The aim of this study was to evaluate the reliability of measurements obtained after the superimposition of three-dimensional (3D) digital models by comparing them with those obtained from lateral cephalometric radiographs and photocopies of plaster models for the evaluation of upper molar distalization. Methods: Data were collected from plaster models and lateral cephalometric radiographs of 20 Class II patients whose maxillary first molars were distalized with an intraoral distalizer. The posterior movements of the maxillary first molars were evaluated using lateral cephalometric radiographs (group CP), photocopies of plaster models (group PH), and digitized 3D models (group TD). Additionally, distalization and expansion of the other teeth and the degrees of molar rotation were measured in group PH and group TD and compared between the two groups. Results: No significant difference was observed regarding the amount of molar distalization among the three groups. A comparison of the aforementioned parameters between group PH and group TD did not reveal any significant difference. Conclusions: 3D digital models are reliable to assess the results of upper molar distalization and can be considered a valid alternative to conventional measurement methods.

Accuracy of inter-arch measurements performed on digital models generated using two types of intraoral scanners: Ex vivo study

  • Yoo, Jo-Kwang;Kang, Yoon-Koo;Lee, Su-Jung;Kim, Seong-Hun;Moon, Cheol-Hyun
    • The Journal of the Korean dental association
    • /
    • v.58 no.4
    • /
    • pp.194-205
    • /
    • 2020
  • Objective: The purpose of this study was to evaluate the accuracy of the inter-arch relationship of digital models generated using two types of intraoral scanners. Methods: In total, 34 plaster model samples were used. Two corresponding digital models were created using two types of intraoral scanners. A total of 15 variables were measured. The plaster model was directly measured using a digital caliper, while the digital models were measured using a software. The accuracy of the measurements was evaluated using repeated measures analysis of variance and the Friedman test. Results: Among the 15 measurements, 6 measurements[Overjet, Overbite, DZ_11-41 (Distance between the gingival zenith of maxillary right central incisor and mandibular right central incisor), DZ_16-46 (Distance between the gingival zenith of maxillary right first molar and mandibular right first molar), DZ_13-33 (Distance between the gingival zenith of maxillary right canine and mandibular left canine), and DZ_23-43 (Distance between the gingival zenith of maxillary left canine and mandibular right canine)]showed statistically significant differences, with DZ_23-43 showing the largest difference of 0.18 mm. The other measurements showed no statistically significant differences. Conclusions: Regardless of the type of scanner used for preparation, digital models can be used as clinically acceptable alternatives to conventional plaster models.

  • PDF

Evaluation of Validity of Edentulous Digital Model for Complete Denture Fabrication (총의치 제작을 위한 무치악 디지털 모형의 정확도 평가)

  • Kim, Won-Soo;Kim, Ki-Baek
    • Journal of dental hygiene science
    • /
    • v.15 no.4
    • /
    • pp.393-398
    • /
    • 2015
  • One of the most critical causes in determining the clinical outcomes of dental prostheses is the validity of models. However, studies that evaluated validity of digital models are few. The objectives of this study were to evaluate validity of edentulous digital models for full denture fabrication. Twenty stone models (edentulous model) were manufactured and scanned by dental blue light emitting diode scanner. Twenty digital models were manufactured. Six linear distances (inter-canine distance, inter-molar distance, two dental arch lengths (right, left), two diagonal of dental arch lengths (right, left) were measured for validity evaluation. The measurements of distances of stone models were used by digital vernier caliper and digital models were used by computer program. The mean${\pm}$deviations values of six distances were calculated. The means were compared by the Mann Whitney U test (${\alpha}=0.05$). All statistical analysis were performed using IBM SPSS Statistics ver. 20.0. Although digital models were smaller than stone models in six distances, there were no significant differences (p>0.05) and non exceeded the clinical acceptable range. The edentulous digital models for full denture fabrication can be considered clinically acceptable.

Digital Image Simulation of Electro-Optical Camera(EOC) on KOMPSAT-1

  • Shim, Hyung-Sik;Yong, Sang-Soo;Heo, Haeng-Pal;Lee, Seung-Hoon;Oh, Kyoung-Hwan;Paik, Hong-Yul
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.349-354
    • /
    • 1999
  • Electro-Optical Camera (EOC) is the main payload of the KOMPSAT-1 satellite to perform the mission of cartography that builds up a digital map of Korean territory including a digital terrain elevation map. This paper discusses the issues of the digital image simulation of EOC for the generation of EOC simulated scene as taken by EOC at 685km altitude on orbit. For the purpose, simulation work has been performed with the sensor models of EOC and the satellite platform motions models through image chain analysis from the illumination source (Sun) to a simulated image output in digital number. MODTRAN fur radiance calculation, MTF models of optics, detector and motions of EOC for system point spread function (PSF), and signal chain equations for digital number output are described. Several noise models of EOC are also considered. The final output is the EOC simulated image in digital number. The simulation technique can be used in several phase of a spaceborne electro-optical system development project, feasibility study phase, design, manufacturing, test phases, ground image processing phases, and so on.

  • PDF

The Generation of Digital Orthophotos and Three Dimensional Models of an Urban Area from Digital Aerial Photos

  • Lee, Jin-Duk
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2002
  • The digital photogrammetric products have been increasingly used as an accurate foundation for representing information associated with infrastructure management. The technological advances in merging raster and vector data within the framework of GIS have allowed for the inclusion of DTMs and digital orthophotos with vector data and its associated attributes. This study addresses not only generating DEMs and digital orthophotos but producing three dimensional building models from aerial photos of an urban area by employing the digital photogrammetric technology. DEMs and digital orthophotos were automatically generated through the process of orientations, image matching and so on, and then the practical problems, which must be solved especially in applying to urban areas, were considered. The accuracy of produced digital orthophotos was derived by using check points. Also three dimensional visualization imagery, which is useful in the landform analysis, and 3D building models were produced. Digital photogrammetric products would be used widely not only as GIS framework data layers by using the GIS link function which links attribute and image information in the database for applying to infrastructure management and but as geospatial data for especially 3D GIS in urban areas.

  • PDF

Three-dimensional comparison of 2 digital models obtained from cone-beam computed tomographic scans of polyvinyl siloxane impressions and plaster models

  • Park, Jin-Yi;Kim, Dasomi;Han, Sang-Sun;Yu, Hyung-Seog;Cha, Jung-Yul
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.257-263
    • /
    • 2019
  • Purpose: This study was performed to evaluate the dimensional accuracy of digital dental models constructed from cone-beam computed tomographic (CBCT) scans of polyvinyl siloxane (PVS) impressions and cast scan models. Materials and Methods: A pair of PVS impressions was obtained from 20 subjects and scanned using CBCT (resolution, 0.1 mm). A cast scan model was constructed by scanning the gypsum model using a model scanner. After reconstruction of the digital models, the mesio-distal width of each tooth, inter-canine width, and inter-molar width were measured, and the Bolton ratios were calculated and compared. The 2 models were superimposed and the difference between the models was measured using 3-dimensional analysis. Results: The range of mean error between the cast scan model and the CBCT scan model was -0.15 mm to 0.13 mm in the mesio-distal width of the teeth and 0.03 mm to 0.42 mm in the width analysis. The differences in the Bolton ratios between the cast scan models and CBCT scan models were 0.87 (anterior ratio) and 0.72 (overall ratio), with no significant difference (P>0.05). The mean maxillary and mandibular difference when the cast scan model and the CBCT scan model were superimposed was 53 ㎛. Conclusion: There was no statistically significant difference in most of the measurements. The maximum tooth size difference was 0.15mm, and the average difference in model overlap was 53 ㎛. Digital models produced by scanning impressions at a high resolution using CBCT can be used in clinical practice.