• Title/Summary/Keyword: Digital mapping

Search Result 728, Processing Time 0.022 seconds

Supermassive Black Hole Masses of ~500k QSOs from the Sloan Digital Sky Survey

  • Taak, Yoon Chan;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.77.2-77.2
    • /
    • 2019
  • Measurements of supermassive black hole (SMBH) masses are crucial in studying the co-evolution of SMBHs and their host galaxies. Although reverberation mapping is the most accurate method known to date, this requires spectroscopic monitoring over long periods. Thus, the current sample barely reaches three digits. The virial method, on the other hand, uses emission-line and continuum properties from a single spectrum to estimate the SMBH mass; hence the name single-epoch method. The Sloan Digital Sky Survey (SDSS) has observed spectra of almost all quasi-stellar objects (QSOs) discovered so far. Building on previous studies, using the single-epoch method, we estimate the SMBH masses of more than 500,000 QSOs from the SDSS DR14 Quasar Catalog. This increases the mass-estimated SMBH sample almost by a factor of two, and especially more for the low-mass regime, which was the main target of SDSS-IV (eBOSS).

  • PDF

A Research on AI Generated 2D Image to 3D Modeling Technology

  • Ke Ma;Jeanhun Chung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.81-86
    • /
    • 2024
  • Advancements in generative AI are reshaping graphic and 3D content design landscapes, where AI not only enriches graphic design but extends its reach to 3D content creation. Though 3D texture mapping through AI is advancing, AI-generated 3D modeling technology in this realm remains nascent. This paper presents AI 2D image-driven 3D modeling techniques, assessing their viability in 3D content design by scrutinizing various algorithms. Initially, four OBJ model-exporting AI algorithms are screened, and two are further evaluated. Results indicate that while AI-generated 3D models may not be directly usable, they effectively capture reference object structures, offering substantial time savings and enhanced design efficiency through manual refinements. This endeavor pioneers new avenues for 3D content creators, anticipating a dynamic fusion of AI and 3D design.

The Acquisition of Geo-spatial Information by Using Aerial Photo Images in Urban Area (항공사진 영상을 이용한 도심지역의 지형공간정보 취득)

  • 이현직;김정일;황창섭
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.1
    • /
    • pp.27-36
    • /
    • 2003
  • Generally, the latest acquisition method of geo-spatial informations in urban area is executed by generation of digital elevation model (DEM) and digital ortho image by digital photogrammetry method which is used large scale photo image. However, the biggest problem of this method is coarse accuracy of DEM which is automatically generated by digital photogrammetry workstation system. The coarse accuracy of DEM caused geo-spatial information in urban area to reduce of accuracy. Therefore, this study is purposed to increase of DEM accuracy which is applied to method terrain classification in urban area. As the results of this study, the proposed method of this study which is increased to accuracy of DEM by classification of terrain is better than accuracy of DEM which is automatically generated by digital photogrammetry workstaion system. And, the edge detection method which is proposed by this study is established to capability of 3D digital mapping in urban area.

The Generation of 3D Geospatial Data using Digital Photogrammetry System (수치사진측량시스템을 이용한 3차원 공간데이터 구축)

  • Noh, Myoung-Jong;Cho, Woo-Sug
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.29-34
    • /
    • 2005
  • Aerial photogrammetry, which is one of the most frequent used technology in mapping and surveying, has been appreciated for its work flow and accuracy to generate 2D and 3D geospatial data. In aerial photograrnrnetry, more than two photographs are taken over the same target area in different position with overlap. Using these photographs and minimum number of ground control points, 3D stereo model is so formed that the ground surface in reality is reconstructed through analogue/analytical plotter or digital photogrammetry system. In case of digital photogrammetry system, 3D geospatial data could be automatically extracted in partial. Recently, in the advent of aerial digital camera such as ADS40 and DMC, digital photogrammetry system will be in the frist place for generating 3D geospatial data. In this paper, we experimentally generated 3D geospatial data using digital photograrnrnetry system in the aspect of work flow.

  • PDF

Evaluation of the Optimum Interpolation for Creating Hydraulic Model from Close Range Digital Photogrammetry (근접수치사진측량으로 수리모형해석에 적용 시 최적보간법 평가)

  • Choi Hyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2005
  • The Development of CCD has contributed to great advancement in mapping technology with giving benefits to research community of photogrammetry. The purpose of this paper is to find the best selection of interpolation method for creating a terrain model form close range digital photogrammetry. T-test as a kind of statistical analysis was conducted to analyze the similarity of hydraulic model with close range digital photogrammetry and trigonometric leveling. Also, many interpolation methods such as inverse distance, kriging, nearest neighbor and TIN about the hydraulic model interpolation were conducted to compare the results for computer to display actual terrain an optimum interpolation of the digital elevation model form close range digital photogrammetry. The results revealed that kriging and TIN interpolation were efficient methods to judge the hazard interpolation law by analyzing geometric similarity of hydraulic model against hydraulic model application.

Development of the Digital Map Updating System using CAD Object Extracted from As-Built Drawings (준공도면에서 추출된 CAD 객체를 이용한 수치지형도의 갱신 시스템 개발)

  • Yang, Sung-Chul;Choi, Jae-Wan;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.13-21
    • /
    • 2009
  • Digital map should have the up-to-dateness as well as the accuracy to perform a role as the national spatial data. As digital mapping process require aerial photograph, surveying, and field working, it consumes a lot of time and cost. So there is a limit to maintain the up-to-dateness. If we updates the digital map frequently by using the as-built drawings, we can prevent the waste of national budget by reuse of existing drawings and make accuracy updates from existing survey results. In spite of this advantages, due to insufficiency of CAD drawing standard, inconsistency of file types of as-built drawings and digital maps, and topology relations between input features and original features, so the frequent updates using the as-built drawings is on the difficult situation to perform. In this research, first, CAD features extracted from as-built drawings land the new/update whether original features exist or not and generate topology from spatial relation of features. Second, suggest the efficient partial-update-plan performing integrity test. As a result, guarantee the accuracy and the up-to-dateness of digital map.

  • PDF

A study on the Digital diorama AR using Natural history Contents (자연사 콘텐츠를 활용한 디지털디오라마 AR연구)

  • Park, Ki-Deok;Chung, Jean-Hun
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • This paper applies the natural history contents of the Science Museum and combines the Gestalt theory to develop the butterfly arrangement structure of the butterfly sample box and the butterfly sample information necessary for the sample box as AR (Augmented Reality). Existing analog sample information is expressed as digital information by combining place, butterfly information, and graph to maximize the effect of digital diorama exhibition. Digital natural history information is increased or decreased, and an environment optimized for real samples and suitability is constructed, and natural history contents are arranged in the principles of collectiveness, closure, simplicity, and continuity using the Gestalt visual perception principle to increase attention and increase the attention of butterfly collection information. Was applied as an application plan of AR.

Mapping of Temperature and Rainfall Using DEM and Multivariate Kriging (수치표고모델과 다변량 크리깅을 이용한 기온 및 강수 분포도 작성)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.1002-1015
    • /
    • 2008
  • We investigate the potential of digital elevation model and multivariate geostatistical kriging in mapping of temperature and rainfall based on sparse weather station observations. By using elevation data which have reasonable correlation with temperature and rainfall, and are exhaustively sampled in the study area, we try to generate spatial distributions of temperature and rainfall which well reflect topographic effects and have less smoothing effects. To illustrate the applicability of this approach, we carried out a case study of Jeju island using observation data acquired in January, April, August, and October, 2005. From the case study results, accounting for elevation via colocated cokriging could reflect detailed topographic characteristics in the study area with less smoothing effects. Colocated cokriging also showed much improved prediction capability, compared to that of traditional univariate ordinary kriging. According to the increase of the magnitude of correlation between temperature or rainfall and elevation, much improved prediction capability could be obtained. The decrease of relative nugget effects also resulted in the improvement of prediction capability.

Automatic 3D Object Digitizing and Its Accuracy Using Point Cloud Data (점군집 데이터에 의한 3차원 객체도화의 자동화와 정확도)

  • Yoo, Eun-Jin;Yun, Seong-Goo;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Recent spatial information technology has brought innovative improvement in both efficiency and accuracy. Especially, airborne LiDAR system(ALS) is one of the practical sensors to obtain 3D spatial information. Constructing reliable 3D spatial data infrastructure is world wide issue and most of the significant tasks involved with modeling manmade objects. This study aims to create a test data set for developing automatic building modeling methods by simulating point cloud data. The data simulates various roof types including gable, pyramid, dome, and combined polyhedron shapes. In this study, a robust bottom-up method to segment surface patches was proposed for generating building models automatically by determining model key points of the objects. The results show that building roofs composed of the segmented patches could be modeled by appropriate mathematical functions and the model key points. Thus, 3D digitizing man made objects could be automated for digital mapping purpose.

Analysis on the Long-Term Shoreline Changes for Beaches Near Bangpo Port Using Aerial Imagery (항공사진을 이용한 방포항 인근 해빈의 장기간 해안선 변화 분석)

  • Kim, Baeck-Oon;Yun, Kong-Hyun;Lee, Chang-Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.477-486
    • /
    • 2013
  • To analyze tendency of temporal and spatial change of shorelines and to estimate rate of shoreline changes using long-term shoreline change data is very important for the coastal environmental management. In this study, investigation was conducted to estimate the rate of shoreline changes using long-term shoreline change data from the year 1985 to 2009 aerial photographs. In this process aerial triangulation, GPS surveying and digital mapping was done for the estimation of changes. As the results, shorelines of Bangpo and Kkotji Beach retreated at a maximum rate of 0.2 m/yr and 0.8 m/yr, respectively. The shoreline could be changed by various factors. However, it was presumed that coastal erosion has been mainly affected by retaining wall constructed in the late 1990s.