• Title/Summary/Keyword: Digital equipment

Search Result 1,033, Processing Time 0.023 seconds

Verification of Multi-point Displacement Response Measurement Algorithm Using Image Processing Technique (영상처리기법을 이용한 다중 변위응답 측정 알고리즘의 검증)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3A
    • /
    • pp.297-307
    • /
    • 2010
  • Recently, maintenance engineering and technology for civil and building structures have begun to draw big attention and actually the number of structures that need to be evaluate on structural safety due to deterioration and performance degradation of structures are rapidly increasing. When stiffness is decreased because of deterioration of structures and member cracks, dynamic characteristics of structures would be changed. And it is important that the damaged areas and extent of the damage are correctly evaluated by analyzing dynamic characteristics from the actual behavior of a structure. In general, typical measurement instruments used for structure monitoring are dynamic instruments. Existing dynamic instruments are not easy to obtain reliable data when the cable connecting measurement sensors and device is long, and have uneconomical for 1 to 1 connection process between each sensor and instrument. Therefore, a method without attaching sensors to measure vibration at a long range is required. The representative applicable non-contact methods to measure the vibration of structures are laser doppler effect, a method using GPS, and image processing technique. The method using laser doppler effect shows relatively high accuracy but uneconomical while the method using GPS requires expensive equipment, and has its signal's own error and limited speed of sampling rate. But the method using image signal is simple and economical, and is proper to get vibration of inaccessible structures and dynamic characteristics. Image signals of camera instead of sensors had been recently used by many researchers. But the existing method, which records a point of a target attached on a structure and then measures vibration using image processing technique, could have relatively the limited objects of measurement. Therefore, this study conducted shaking table test and field load test to verify the validity of the method that can measure multi-point displacement responses of structures using image processing technique.

Evaluation of Application Possibility for Floating Marine Pollutants Detection Using Image Enhancement Techniques: A Case Study for Thin Oil Film on the Sea Surface (영상 강화 기법을 통한 부유성 해양오염물질 탐지 기술 적용 가능성 평가: 해수면의 얇은 유막을 대상으로)

  • Soyeong Jang;Yeongbin Park;Jaeyeop Kwon;Sangheon Lee;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1353-1369
    • /
    • 2023
  • In the event of a disaster accident at sea, the scale of damage will vary due to weather effects such as wind, currents, and tidal waves, and it is obligatory to minimize the scale of damage by establishing appropriate control plans through quick on-site identification. In particular, it is difficult to identify pollutants that exist in a thin film at sea surface due to their relatively low viscosity and surface tension among pollutants discharged into the sea. Therefore, this study aims to develop an algorithm to detect suspended pollutants on the sea surface in RGB images using imaging equipment that can be easily used in the field, and to evaluate the performance of the algorithm using input data obtained from actual waters. The developed algorithm uses image enhancement techniques to improve the contrast between the intensity values of pollutants and general sea surfaces, and through histogram analysis, the background threshold is found,suspended solids other than pollutants are removed, and finally pollutants are classified. In this study, a real sea test using substitute materials was performed to evaluate the performance of the developed algorithm, and most of the suspended marine pollutants were detected, but the false detection area occurred in places with strong waves. However, the detection results are about three times better than the detection method using a single threshold in the existing algorithm. Through the results of this R&D, it is expected to be useful for on-site control response activities by detecting suspended marine pollutants that were difficult to identify with the naked eye at existing sites.

A Study to Decrease Exposure Dose for the Radiotechnologist in PET/CT (PET/CT 검사에서 방사선 종사자 피폭선량 저감에 대한 방안 연구)

  • Cho, Seok-Won;Park, Hoon-Hee;Kim, Jung-Yul;Ban, Yung-Kak;Lim, Han-Sang;Oh, Ki-Beak;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.159-165
    • /
    • 2010
  • Purpose: Positron emission tomography scan has been growing diagnostic equipment in the development of medical imaging system. Compare to $^{99m}Tc$ emitting 140 keV, Positron emission radionuclide emits 511 keV gamma rays. Because of this high energy, it needs to reduce radioactive emitting from patients for radiotechnologist. We searched the external dose rates by changing distance from patients and measure the external dose rates when we used shielder investigate change external dose rates. In this study, the external dose distribution were analyzed in order to help managing radiation protection of radiotechnologists. Materials and Methods: Ten patients were searched (mean age: $47.7{\pm}6.6$, mean height: $165.5{\pm}3.8$ cm and mean weight: $65.9{\pm}1.4$ kg). Radiation were measured on the location of head, chest, abdomen, knees and toes at the distance of 10, 50, 100, 150 and 200 cm. Then, all the procedure was given with a portable radiation shielding on the location of head, chest and abdomen at the distance of 100, 150 and 200 cm and transmittance was calculated. Results: In 10 cm, head (105.40 ${\mu}Sv/h$) was the highest and foot (15.85 ${\mu}Sv/h$) was the lowest. In 200 cm, head, chest and abdomen showed similar. On head, the measured dose rates were 9.56 ${\mu}Sv/h$, 5.23 ${\mu}Sv/h$, and 3.40 ${\mu}Sv/h$ in 100, 150 and 200 cm respectively. When using shielder, it shows 2.24 ${\mu}Sv/h$, 1.67 ${\mu}Sv/h$, and 1.27 ${\mu}Sv/h$ in 100, 150 and 200 cm on head. On chest, the measured dose rates were 8.54 ${\mu}Sv/h$, 4.90 ${\mu}Sv/h$, 3.44 ${\mu}Sv/h$ in 100, 150 and 200 cm, respectively. When using shielder, it shows 2.27 ${\mu}Sv/h$, 1.34 ${\mu}Sv/h$, and 1.13 ${\mu}Sv/h$ in 100, 150 and 200 cm on chest. On abdomen, the measured dose rates were 9.83 ${\mu}Sv/h$, 5.15 ${\mu}Sv/h$ and 3.18 ${\mu}Sv/h$ in 100, 150 and 200cm respectively. When using shielder, it shows 2.60 ${\mu}Sv/h$, 1.75 ${\mu}Sv/h$ and 1.23 ${\mu}Sv/h$ in 100, 150 and 200 cm on abdomen. Transmittance was increased as the distance was expanded. Conclusion: As the distance was further, the radiation dose were reduced. When using shielder, the dose were reduced as one-forth of without shielder. The Radio technologists are exposed of radioactivity and there were limitations on reducing the distance with Therefore, the proper shielding will be able to decrease radiation dose to the radiotechnologists.

  • PDF