• Title/Summary/Keyword: Digital X-ray unit

Search Result 30, Processing Time 0.033 seconds

The Development of X-ray Unit of Remote Emergency medical System (원격응급시스템에 적합한 X-ray 장치 개발)

  • Cho, Dong-Heon;Koo, Kyung-Wan;Yang, Hae-Sool;Han, Man-Seok;Han, Sang-Ok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.6
    • /
    • pp.49-54
    • /
    • 2006
  • The X-ray unit developed by this study is to diagnose emergency cases which is too far from a hospital and to classify the patients. We have to use the X-ray in a ambulance or the scene of an accident where we cannot use the AC220 outlet because of the distance from a hospital as well. The X-ray unit developed has a characteristics as follows. First of all, as the unit has a condenser in itself where there is no electric supply, we can use the X-ray inspector in a mountain area or a island. Second, we can detect by digital detector the information taken by X-ray from DC 12[V] electricity and store as a form of file. A control circuit can secure the reliability of the X-ray unit by using the Pic16F84A X-ray and provide various functions. The X-ray unit which suits remote emergency system can be efficiently used for the emergent cases who is too far from a doctor and a hospital or in the situation where it is difficult to diagnose, transcribe and treat simultaneously.

The Development of Portable Digital X-ray Power Supply Unit for Emergency Medical Services (응급의료에서 이용될 휴대용 디지털 X-ray 전원장치 개발)

  • Cho, Dong-Heon;Koo, Kyung-Wan;Yong, Hae-Sool
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.125-131
    • /
    • 2006
  • The existing X-ray generators are either ones which are settled at fixed places or ones which are movable to sick rum. Movable generators can be very useful according to the circumstances of patients, but there remains a restraint that AC220[V] in the hospitals must be provided. When examining a first-aid patient who stays distant from the hospital or when grouping patients caused by disaster, the services of doctors at emergency centers should be very restrictive. Hence, this study developed a portable digital X-ray power supply unit that are utilizable at the accident spot or in a moving ambulance. By using the nit, the information of patients can be transmitted to the emergency center on the spot and thereby doctors can make a correct diagnosis. The properties of the unit are as follows: First, portable batteries(DCl2[V]) are utilized as electric source for the wit. Second PIC16F84A is utilized as control circuit in order to guarantee considerable reliance and to provide various functions. This portable digital X-ray power supply unit is expected to contribute to the emergency medical service system to be more advanced.

Measurement of Skin Dose Distribution for the Mobile X-ray Unit Collimator Shielding Device (이동형 X선 장치 차폐도구 제작을 통한 표면선량 분포 측정)

  • Hong, Sun-Suk;Kim, Deuk-Yong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.12 no.1
    • /
    • pp.5-8
    • /
    • 2010
  • Opened a court in February 10, 2006, a rule of safety management of the diagnosis radiation system was promulgated for safety of the radiation worker, patients and patients' family members. The purpose of this rule is to minimize the risk of being exposed to radiation during the process of handling X-ray. For this reason, we manufactured shielding device of mobile X-ray unit collimator for diminution of skin dose. Shielding device is made to a thickness of Pb 0.375mm. For portable chest radiography, we measured skin dose 50cm from center ray to 200cm at intervals of 20cm by Unfors Xi detector. As a result, a rule of safety management of the diagnosis radiation system has been strengthened. But there are exceptions, such as ER, OR, ICU to this rule. So shielding device could contribute to protect unnecessary radiation exposure and improve nation's health.

  • PDF

The Propriety of Portable Digital X-RAY Equipment for Emergency Medical Services (델파이 기법을 이용한 응급의료에서의 휴대용 디지털 X-ray 발생장치의 적절성)

  • Cho, Dong-Heon;Gu, Kyung-Wan;Yang, Hae-Sool;Jo, Jean-Man;Han, Man-Seok;Lee, Mi-Ok
    • The Korean Journal of Emergency Medical Services
    • /
    • v.9 no.1
    • /
    • pp.15-23
    • /
    • 2005
  • The purpose of this study is to analyze the propriety of portable digital X-ray Equipment for Emergency Medical Services in Daejon Emergency Medical Center in Korea. The major instruments of this study were Korean Self-Analysis Opinionnaire, Questionnaire contains 35 items which measure emergency medical personal opnions. To take the analysis of data, the total of 92 persons were investigated in Medical Information Center in Daejon Metropolitan City from 2005. 20. April to 2004. 25. May. The data were analyzed by the path analysis SPSS program. First, portable X-RAY equipment is needed to apply it to emergency. Second, it should have small and light structure compared with old equipments and have high voltage generator unit for X-RAY using inverter. Third, it should be able to send the shot data that is digital detector type without film to doctors in emergency center.

  • PDF

A Study on the Proper Chest Exposure Conditions of Mobile Digital X-ray Unit by Exposure Index (Exposure Index를 이용한 이동형 디지털 X선 장치의 흉부촬영 적정노출조건에 관한 연구)

  • Kim, Jae-In;Lee, Yang-Sub;Jang, Dong-Soo;Jung, Min-Cheol;Bae, Seung-Ho;Lee, Kwan-Sub;Ha, Dong-Yoon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.13 no.3
    • /
    • pp.139-144
    • /
    • 2011
  • The purpose of this report is recommending a standard indicator which reflects the radiation exposure that is incident on a detector after every exposure event and that reflects the noise levels present in the image data. The experiment was performed with mobile digital X-ray unit and used a acrylic phantom for exposure index measurement. Exposure modality was kVp, mAs, SID. After every exposure, make a data sheet for characteristic curve of detector response. The equipment performed Mobile digital X-ray unit provide the user with values ralated to the incident exposure(air kerma)to the digital detector. They are showed as a logarithmic function shaped. As a result, DEI means a relative measure of exposure to the detector, as compared to the expected exposure for a particular anatomical view. Radiographic technique is the combination of factors used to exposure an anatomical part to produce a high quality radiography and technique charts used most commonly by radiographers to produce consistently exposure level which patient dose can be kept acceptably low.

  • PDF

An Implementation of Radiologic Imaging Device of Remote Emergency Medical System (원격응급시스템의 방사선 영상장치 구현)

  • Cho, Dong-Heon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2007
  • The radiologic imaging device was implemented. It can be installed in an ambulance or used when an accident happens. After an equipment which generates X-ray generating unit with a tube in DC 12[V] had been made, a trait experiment using an oscilloscope was made. An experiment was carried out where the generated X-ray was saved as a form of a file using a digital detector. In this experiment, as a result of generating X-ray and detecting it using a digital detector, 1.67[MB]-, jpg- radical rays information could be saved. One distinct advantage of the developed radiologic imaging device is the fact that we can efficiently deal with emergency cases too far from the hospital, difficult to diagnose but treat simultaneously. By using the radiologic imaging device at the urgent scene of an accident or in a moving ambulance, we can provide the patient's X-ray information with the emergency medical specialist who is in the emergent medical center and have the patients prescribed and treated appropriately. As a result the developed emergency medical treatment can be expected.

The Necessary of Portable X-ray Equipment for Emergency Medical Service System and Sports Injures (응급의료체계와 스포츠손상에서 휴대용 X-ray 장치의 도입 필요성)

  • Cho, Dong-Heon;Koo, Kyung-Wan;Jo, Jeanman
    • The Korean Journal of Emergency Medical Services
    • /
    • v.8 no.1
    • /
    • pp.189-197
    • /
    • 2004
  • The fate of a emergency patient is decided upon the extent of first aid in one hour after accident. Suitable diagnosis and treatment can raise the possibility of patient's life and reduce the recuperation time. We surveys papers which were The Korean Society Of Sports Medicine(1993-2004 yeas 405papers)and The Korean Society Of Emergency Medicine (1990-2004 yeas 797 papers). This paper got the following results through analyses of problems in emergency medical service system and of injures from sports. First, portable X-RAY equipment is needed to apply it to emergency. Second, it should have small and light structure compared with old equipments and have high voltage generator unit for X-RAY using inverter. Third, it should be able to send the shot data that is digital detector type without film to doctors in emergency center.

  • PDF

Study of Image Properties for Computed Radiography (Computed Radiography의 영상특성에 관한 연구)

  • Ryu, Ki-Hyun;Jung, Jae-Eun
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.2
    • /
    • pp.23-31
    • /
    • 2008
  • Computed radiography(CR) has been widely used in the field of diagnostic radiography since digital X-ray image was introduced. The imaging performance of CR system was studied by analyzing the digital image data of the CR images which are the outcomes of the whole imaging system composed of image plate(IP), laser digitizer, analoge-digital convertor, and a given image processing unit. In this study, we used a conventional CR system made by Agfa. From the flat field image of 150$\times$150 image pixels, signal-to-noise ratio(SNR) was calculated. SNR of the CR image increases in proportion to logarithm value of the X-ray exposure irradiated on the IP. SNR is less than about 6 at the exposure below 0.2mR and is more than 10 at the exposure above 0.54mR. In our study, most of images obtained by the smaller exposures less than 2.0mR can not be readable. In general, the minimum value of the SNR ranges from 3 to 5. We obtained modulation transfer function(MTF) by analyzing the bar pattern image which was made under conditions as follows: X-ray tube potential was 55kVp, the IP exposure was 0.54 mR, and the distance between X-ray source to IP was 2m, where bar pattern was located on the IP. MTF is 23% at 2.5lp/mm spatial frequency. Provided that the MTF of noise equivalent modulation is 10%, the CR system has the limiting spatial resolution of 3.2lp/mm. If the image sharpness is evaluated by the spatial frequency where MTF is 50%. the corresponding spatial frequency is 0.5$\sim$0.75lp/mm. MTFA(Modulation Transfer Function Area) is 1.0lp/mm. Compared with the Fuji CR whose MTFA is 1.1lp/mm, Agfa CR in this study shows almost same MTFA performance.

  • PDF

BLDC Motor Control Unit for Automation of X ray Equipment (X선 기기의 자동화를 위한 BLDC 모터 제어 장치)

  • Kim, Tae-Gon;Kim, Young-Pyo;Cheon, Min-Woo
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.833-838
    • /
    • 2011
  • X-ray device used in the diagnosis has made possible to have more effective and accurate diagnosis, powered by the development of various devices. Based on this, X-ray device has become the most basic and essential diagnostic equipment in clinical medicine. At present, in the image acquisition field using X-ray, the use of Digital radiography which is useful in the acquisition time reduction and transfer of images and is possible to have the dose reduction has expanded. With the structure using one detector, this DR device has disadvantages in that it needs structural changes unlike existing X-ray and the detector should be moved to the desired position depending on the shooting location. Therefore, in this study, using BLDC(Brushless direct current) motor and PID(Proportional integral differential) control method, the automatic control system of 3-axis which is upward and downward, left and right and rotation of detector where having the most movement in DR was designed and produced and its performance was evaluated.

Comparison of Center Error or X-ray Field and Light Field Size of Diagnostic Digital X-ray Unit according to the Hospital Grade (병원 등급에 따른 X선조사야와 광조사야 간의 면적 및 중심점 오차 비교)

  • Lee, Won-Jeong;Song, Gyu-Ri;Shin, Hyun-yi
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • The purpose of this study was intended to recognize the importance of quality control (QC) in order to reduce exposure and improve image quality by comparing the center-point (CP) of according to hospital grade and the difference between X-ray field (XF) and light field (LF) in diagnostic digital X-ray devices. XF and LF size, CP were measured in 12 digital X-ray devices at 10 hospitals located in 00 metropolitan cities. Phantom was made in different width respectively, using 0.8 mm wire after attaching to the standardized graph paper on transparent plastic plate and marked as cross wire in the center of the phantom. After placing the phantom on the table of the digital X-ray device, the images were obtained by shooting it vertically each field of survey. All images were acquired under the same conditions of exposure at distance of 100cm between the focus-detector. XF and LF size, CP error were measured using the picture archiving communication system. data were expressed as mean with standard error and then analyzed using SPSS ver. 22.0. The difference in field between the XF and LF size was the smallest in clinic, followed by university hospitals, hospitals and general hospitals. Based on the university hospitals with the least CP error, there was a statistically significant difference in CP error between university hospitals and clinics (p=0.024). Group less than 36-month after QC had fewer statistical errors than 36-month group (0.26 vs. 0.88, p=0.036). The difference between the XF and LF size was the lowest in clinic and CP error was the lowest in university hospital. Moreover, hospitals with short period of time after QC have fewer CP error and it means that introduction of timely QC according to the QC items is essential.