• Title/Summary/Keyword: Digital Tomosynthesis

Search Result 37, Processing Time 0.029 seconds

Diagnostic Performance of Digital Breast Tomosynthesis with the Two-Dimensional Synthesized Mammogram for Suspicious Breast Microcalcifications Compared to Full-Field Digital Mammography in Stereotactic Breast Biopsy (정위적 유방 조직검사 시 미세석회화 의심 병변에서의 디지털 유방단층영상합성법과 전역 디지털 유방촬영술의 진단능 비교)

  • Jiwon Shin;Ok Hee Woo;Hye Seon Shin;Sung Eun Song;Kyu Ran Cho;Bo Kyoung Seo
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.5
    • /
    • pp.1090-1103
    • /
    • 2022
  • Purpose To evaluate the diagnostic performance of digital breast tomosynthesis (DBT) with the two-dimensional synthesized mammogram (2DSM), compared to full-field digital mammography (FFDM), for suspicious microcalcifications in the breast ahead of stereotactic biopsy and to assess the diagnostic image visibility of the images. Materials and Methods This retrospective study involved 189 patients with microcalcifications, which were histopathologically verified by stereotactic breast biopsy, who underwent DBT with 2DSM and FFDM between January 8, 2015, and January 20, 2020. Two radiologists assessed all cases of microcalcifications based on Breast Imaging Reporting and Data System (BI-RADS) independently. They were blinded to the histopathologic outcome and additionally evaluated lesion visibility using a fivepoint scoring scale. Results Overall, the inter-observer agreement was excellent (0.9559). Under the setting of category 4A as negative due to the low possibility of malignancy and to avoid the dilution of malignancy criteria in our study, McNemar tests confirmed no significant difference between the performances of the two modalities in detecting microcalcifications with a high potential for malignancy (4B, 4C, or 5; p = 0.1573); however, the tests showed a significant difference between their performances in detecting microcalcifications with a high potential for benignancy (4A; p = 0.0009). DBT with 2DSM demonstrated superior visibility and diagnostic performance than FFDM in dense breasts. Conclusion DBT with 2DSM is superior to FFDM in terms of total diagnostic accuracy and lesion visibility for benign microcalcifications in dense breasts. This study suggests a promising role for DBT with 2DSM as an accommodating tool for stereotactic biopsy in female with dense breasts and suspicious breast microcalcifications.

Role of Breast Tomosynthesis in Diagnosis of Breast Cancer for Japanese Women

  • Takamoto, Yayoi;Tsunoda, Hiroko;Kikuchi, Mari;Hayashi, Naoki;Honda, Satoshi;Koyama, Tomomi;Ohde, Sachiko;Yagata, Hiroshi;Yoshida, Atsushi;Yamauchi, Hideko
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3037-3040
    • /
    • 2013
  • Introduction: Mammography is the most basic modality in breast cancer imaging. However, the overlap of breast tissue depicted on conventional two-dimensional mammography (2DMMG) may create significant obstacles to detecting abnormalities, especially in dense or heterogeneously dense breasts. In three-dimensional digital breast tomosynthesis (3DBT), tomographic images of the breast are reconstructed from multiple projections acquired at different angles. It has reported that this technology allows the generation of 3D data, therefore overcoming the limitations of conventional 2DMMG for Western women. We assessed the detectability of lesions by conventional 2DMMG and 3DBT in diagnosis of breast cancer for Japanese women. Methods: The subjects were 195 breasts of 99 patients (median age of 48 years, range 34~82 years) that had been pathologically diagnosed with breast cancer from December 20, 2010 through March 31, 2011. Both conventional 2DMMG and 3DBT imaging were performed for all patients. Detectability of lesions was assessed based on differences in category class. Results: Of the affected breasts, 77 (75.5%) had lesions assigned to the same categories by 2DMMG and 3DBT. For 24 (23.5%) lesions, the category increased in 3DBT indicating improvement in diagnostic performance compared to 2DMMG. 3DBT improved diagnostic sensitivity for patients with mass, focal asymmetric density (FAD), and architectural distortion. However, 3DBT was not statistically superior in diagnosis of the presence or absence of calcification. Conclusions: In this study, 3DBT was superior in diagnosing lesions in form of mass, FAD, and/or architectural distortion. 3DBT is a novel technique that may provide a breakthrough in solving the difficulties of diagnosis caused by parenchyma overlap for Japanese women.

A new X-ray cross-sectional image system for solder joint inspection of double-sided PCB (양면 PCB의 납땜부 검사를 위한 새로운 X선 단층영상 시스템)

  • 강성택;정재훈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.117-120
    • /
    • 1996
  • In this paper, a new approach to acquire the cross-sentional image for automatic solder joint inspection of double-sided PCB using X-ray source is presented. We designed the apparatus with fixed X-ray source to realize the cross-sectional image by tunning object and detector synchronously. The cross-sectional images are captured at several view angle of X-ray source, the geometric image distortions caused by view angle and the shape of image intensifier are compensated. The precision variation of cross-sectional image by the change of view angle was investigated. Also we acquired the cross-sectional image to the solder joint of double-sided PCB and reconstructed the shape of solder joint.

  • PDF

Backprojection Filtering Method for Limited Angle Tomography (제한된 각도에서 단층영상 획득을 위한 역투사 후 필터링 방법)

  • Cho, Min-Kook;Kim, Ho-Kyung;Yin, Z-Hye;Kim, Tae-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.1
    • /
    • pp.46-51
    • /
    • 2008
  • We describe a backprojection filtering method for limited angle tomography. In order to reduce blur artifacts originated from the out-of-planes and control high-frequency noise, we employed two band-limited window functions, and which were realized by Hann filters in this study. Based on the experimentally measured data, the performance of the developed method is demonstrated by comparing with the conventional shift-and-add and filtered backprojection methods. Application of the developed method to the dental imaging has a potential to be used for the preoperative evaluation of the jaw for dental implants with much reduced patient dose instead of the conventional dental computed tomography.

Patterns in the Use and Perception of Digital Breast Tomosynthesis: A Survey of Korean Breast Radiologists (디지털 유방 토모신테시스에 대한 국내 사용 현황과 인식에 관한 설문조사 연구)

  • Eun Young Chae;Joo Hee Cha;Hee Jung Shin;Woo Jung Choi;Jihye Kim;Sun Mi Kim;Hak Hee Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.6
    • /
    • pp.1327-1341
    • /
    • 2022
  • Purpose To evaluate the pattern of use and the perception of digital breast tomosynthesis (DBT) among Korean breast radiologists. Materials and Methods From March 22 to 29, 2021, an online survey comprising 27 questions was sent to members of the Korean Society of Breast Imaging. Questions related to practice characteristics, utilization and perception of DBT, and research interests. Results were analyzed based on factors using logistic regression. Results Overall, 120 of 257 members responded to the survey (response rate, 46.7%), 67 (55.8%) of whom reported using DBT. The overall satisfaction with DBT was 3.31 (1-5 scale). The most-cited DBT advantages were decreased recall rate (55.8%), increased lesion conspicuity (48.3%), and increased cancer detection (45.8%). The most-cited DBT disadvantages were extra cost for patients (46.7%), insufficient calcification characterization (43.3%), insufficient improvement in diagnostic performance (39.2%), and radiation dose (35.8%). Radiologists reported increased storage requirements and interpretation time for barriers to implementing DBT. Conclusion Further improvement of DBT techniques reflecting feedback from the user's perspective will help increase the acceptance of DBT in Korea.

Image Quality Evaluation according to X-ray Source Arrangement Type and the Number of Projections in a s-IGDT System (s-IGDT 시스템의 X-선원 배열 형태 및 투영상 개수에 따른 영상 화질 평가에 관한 연구)

  • Lee, Dahye;Nam, KiBok;Lee, Seungwan
    • Journal of radiological science and technology
    • /
    • v.45 no.2
    • /
    • pp.117-125
    • /
    • 2022
  • Although stationary inverse-geometry digital tomosynthesis (s-IGDT) is able to reduce motion artifacts, image acquisition time and radiation dose, the image quality of the s-IGDT is degraded due to the truncations arisen in projections. Therefore, the effects of geometric and image acquisition conditions in the s-IGDT should be analyzed for improving the image quality and clinical applicability of the s-IGDT system. In this study, the s-IGDT images were obtained with the various X-ray source arrangement types and the various number of projections. The resolution and noise characteristics of the obtained s-IGDT images were evaluated, and the characteristics were compared with those of the conventional DT images. The s-IGDT system using linear X-ray source arrangement and 40 projections maximized the image characteristics of resolution and noise, and the corresponding system was superior to the conventional DT system in terms of image resolution. In conclusion, we expect that the s-IGDT system can be used for providing medical images in diagnosis.

A Numerical Voxel Model for 3D-printed Uncompressed Breast Phantoms (3D 프린팅 비압박 유방 팬텀 제작을 위한 복셀 기반 수치 모델에 관한 연구)

  • Youn, Hanbean;Baek, Cheol Ha;Jeon, Hosang;Kim, Jinsung;Nam, Jiho;Lee, Jayoung;Lee, Juhye;Park, Dahl;Kim, Wontaek;Ki, Yongkan;Kim, Donghyun;Won, Jong Hun;Kim, Ho Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.3
    • /
    • pp.116-122
    • /
    • 2017
  • Physical breast phantoms would be useful for the development of a dedicated breast computed tomography (BCT) system and its optimization. While the conventional breast phantoms are available in compressed forms, which are appropriate for the mammography and digital tomosynthesis, however, the BCT requires phantoms in uncompressed forms. Although simple cylindrical plastic phantoms can be used for the development of the BCT system, they will not replace the roles of uncompressed phantoms describing breast anatomies for a better study of the BCT. In this study, we have designed a numerical voxel breast phantom accounting for the random nature of breast anatomies and applied it to the 3D printer to fabricate the uncompressed anthropomorphic breast phantom. The numerical voxel phantom mainly consists of the external skin and internal anatomies, including the ductal networks, the glandular tissues, the Cooper's ligaments, and the adipose tissues. The voxel phantom is then converted into a surface data in the STL file format by using the marching cube algorithm. Using the STL file, we obtain the skin and the glandular tissue from the 3D printer, and then assemble them. The uncompressed breast phantom is completed by filling the remaining space with oil, which mimics the adipose tissues. Since the breast phantom developed in this study is completely software-generated, we can create readily anthropomorphic phantoms accounting for diverse human breast anatomies.