• Title/Summary/Keyword: Digital Radiography

Search Result 486, Processing Time 0.024 seconds

Comparison Study on CNR and SNR of Thoracic Spine Lateral Radiography (흉추 측면검사 영상의 CNR과 SNR 측정의 비교 연구)

  • Kim, Ki-Won;Min, Jung-Whan;Lyu, Kwang-Yeul;Kim, Jung-Min;Jeong, Hoi-Woun;Lee, Joo-Ah;Jung, Jae-Hong;Sung, Dong-Chan;Park, Soon-Cheol
    • Journal of radiological science and technology
    • /
    • v.36 no.4
    • /
    • pp.273-280
    • /
    • 2013
  • This study was proven for the T-spine breathing technique in lateral projection, using computer radiography (CR), charge coupled device (CCD), indirect digital radiography (IDR) and direct digital radiography (DDR). All images were evaluated and compared with CNR and SNR measured with the mean pixels and the standard deviation as setting ROI of spinous process, pedicle, vertebral body, intervertebral foramen and intervertebral disk using Image J. In experiment results of 4 type detectors, T-spine breathing technique was indicated as excellent in ROI of spinous process, pedicle, vertebral body, intervertebral foramen and intervertebral disk. As T-spine breathing technique indicated excellent images compared to the existing T-spine lateral radiography, this method would be useful for elderly patients who have difficulty in deep exhalation. This study was indicated the application possibility of T-spine breathing technique by presenting contrast to noise ratio (CNR) and signal to noise ratio (SNR) with quantitative value in 4 type detectors.

Contrast-Detail Phantom을 이용한 CR에서 Image Plate의 사용 횟수에 따른 Contrast-Detail Curve의 변화

  • Lee, Seung-Cheol;Park, Jang-Heum;Kim, Jae-Dong;Park, Chang-Hyeon
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.7 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Purpose : Image plate (IP) is substituted for film in computed radiography. This study is to investigate into a variation of contrast and detail by the number used of image plate in computed radiography. Materials and Methods : A Contrast-Detail(CD)-RAD 2.0 phantom(Nijmegen hospital, The Netherlands) was used for this study. The computed radiography(CR) CD-RAD phantom images were acquired at 40 kVp, 160 mA, 1.6 mAs, and small focus with the Shimadzu general radiography UD-150B-10 system and Fuji FCR 5000 image process system with speed of 200. The IP used including once, 5000 times, and 10000 times also was used. The numerical value of image quality figures (IQF) was produced by CD-RAD analyser(the program is installed in the directory), and then contrast-detail curve was drawn. Results : In this study, the value of IQF was 3.53 in IP used once, 3.40 in 5000 times, and 3.22 in 10000 times. Conclusions : There was a variation of contrast-detail curve by the number used of IP with contrast-detail phantom in computed radiography. Therefore, it is necessary that the IP with lower IQF and a shift of contrast-detail curve to the lower left part is used.

  • PDF

Image Quality Evaluation of Medical Image Enhancement Parameters in the Digital Radiography System (디지털 방사선시스템에서 영상증강 파라미터의 영상특성 평가)

  • Kim, Chang-Soo;Kang, Se-Sik;Ko, Seong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.329-335
    • /
    • 2010
  • Digital imaging detectors can use a variety of detection materials to convert X-ray radiation either to light or directly to electron charge. Many detectors such as amorphous silicon flat panels, CCDs, and CMOS photodiode arrays incorporate a scintillator screen to convert x-ray to light. The digital radiography systems based on semiconductor detectors, commonly referred to as flat panel detectors, are gaining popularity in the clinical & hospital. The X-ray detectors are described between a-Silicon based indirect type and a-Selenium based direct type. The DRS of detectors is used to convert the x-ray to electron hole pairs. Image processing is described by specific image features: Latitude compression, Contrast enhancement, Edge enhancement, Look up table, Noise suppression. The image features are tuned independently. The final enhancement result is a combination of all image features. The parameters are altered by using specific image features in the different several hospitals. The image in a radiological report consists of two image evaluation processes: Clinical image parameters and MTF is a descriptor of the spatial resolution of a digital imaging system. We used the edge test phantom and exposure procedure described in the IEC 61267 to obtain an edge spread function from which the MTF is calculated. We can compare image in the processing parameters to change between original and processed image data. The angle of the edge with respect to the axes of detector was varied in order to determine the MTF as a function of direction. Each MTF is integrated within the spatial resolution interval of 1.35-11.70 cycles/mm at the 50% MTF point. Each image enhancement parameters consists of edge, frequency, contrast, LUT, noise, sensitometry curve, threshold level, windows. The digital device is also shown to have good uniformity of MTF and image parameters across its modality. The measurements reported here represent a comprehensive evaluation of digital radiography system designed for use in the DRS. The results indicate that the parameter enables very good image quality in the digital radiography. Of course, the quality of image from a parameter is determined by other digital devices in addition to the proper clinical image.

Application of portable digital radiography for dental investigations of ancient Egyptian mummies during archaeological excavations: Evaluation and discussion of the advantages and limitations of different approaches and projections

  • Seiler, Roger;Eppenberger, Patrick;Ruhli, Frank
    • Imaging Science in Dentistry
    • /
    • v.48 no.3
    • /
    • pp.167-176
    • /
    • 2018
  • Purpose: In the age of X-ray computed tomography (CT) and digital volume tomography (DVT), with their outstanding post-processing capabilities, indications for planar radiography for the study of the dentition of ancient Egyptian mummies may easily be overlooked. In this article, the advantages and limitations of different approaches and projections are discussed for planar oral and maxillofacial radiography using portable digital X-ray equipment during archaeological excavations. Furthermore, recommendations are provided regarding projections and sample positioning in this context. Materials and Methods: A total of 55 specimens, including 19 skeletonized mandibles, 14 skeletonized skulls, 18 separate mummified heads, and 4 partially preserved mummies were imaged using portable digital X-ray equipment in the course of archaeological excavations led by the University of Basel in the Valley of the Kings between 2009 and 2012. Images were evaluated by 2 authors with regard to the visibility of diagnostically relevant dental structures using a 4-point grading system(Likert scale). Results: Overall, the visibility of diagnostically relevant dental structures was rated highest by both authors on X-ray images acquired using a dental detector. The tube-shift technique in the lateral projections of mandibular dentition achieved the second-best rating, and lateral projections achieved the third-best rating. Conclusion: Conventional planar digital X-ray imaging, due to its ubiquity, remains an excellent method-and often the only practicable one-for examining the skulls and teeth of ancient Egyptian mummies under field conditions. Radiographic images of excellent diagnostic quality can be obtained, if an appropriate methodology regarding the selected projections and sample placement is followed.

The Response Characteristics of as Addition Ratio of Arsenic in $CaWO_4/a-Se$ based X-ray Conversion Sensor ($CaWO_4/a-Se$ 구조의 X선 변환센서에서 a-Se의 Arsenic 첨가량에 따른 반응 특성)

  • Kang, Sang-Sik;Suk, Dae-Woo;Cho, Sung-Ho;Kim, Jae-Hyung;Nam, Namg-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.416-419
    • /
    • 2002
  • There are being two prominent studying for Digital Radiography. Direct and Indirect method of Digital Radiography are announced for producing high quality digital image. The one is using amorphous selenium as photoconductor and the other is using phosphor layer as a light conversion. But each two systems have strength and weakness such as high voltage and blurring effect. In this study, we investigated the electrical characteristic of $multi-layer\left(CaWO_{4}+a-Se \right)$ as a photoconductor according to the changing arsenic composition ratio. This is a basic research for developing of Hybrid digital radiography which is a new type X-ray detector. The arsenic composition ratio of a-Se compound is classified into 7 different kinds which have 0.1%, 0.3%, 0.5%, 1%, 1.5%, 5%, 10% and were made test sample throught thermo-evaporation. The phosphor layer of $CaWO_4$ was overlapped on a-Se using EFIRON optical adhesives. We measured the dark and photo current about the test sample and compared the electrical characteristic of the net charge and signal-to-noise ratio. Among other things, test sample of compound material of 0.3% arsenic showed good characteristic of $2.45nA/cm^2$ dark current and $357.19pC/cm^2/mR$ net charge at $3V/{\mu}m$.

  • PDF

Assessing changes of peri-implant bone using digital subtraction radiography

  • Kwon Ji-Yung;Kim Yung-Soo;Kim Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.273-281
    • /
    • 2001
  • Digital subtraction radiography may be one of the most precise and noninvasive methods for assessing subtle density changes in peri-implant bone, providing additional diagnostic information on implant tissue integration in overall maintenance. The aims of this study were to evaluate density changes after first, second surgery of dental implant and to measure the amount of marginal bone loss 9 months after second surgery using digital subtraction radiography. Bone change around 30 screw-shaped implants in 16 patients were assessed on radiographs. 17 Branemark implants of 3.75mm in diameter(Nobel Biocare, Goteborg, Sweden), 2 Branemark implants of 5.0mm in diameter, 11 $Replace^{TM}$ implants of 4.3mm in diameter(Nobel Biocare, Goteborg, Sweden) were used. To standardize the projection geometry of serial radiographs of implants, customized bite block was fabricated using XCP film holder(Rinn Corporation, Elgin, IL.) with polyether impression material of Impregum(ESPE, Germany) and direct digital image was obtained. Qualitative and quantitative changes on radiographs were measured with Emago software(The Oral Diagnostic System, Amsterdam, Netherlands). The results were as follows: 1. The peri-implant bone density of 69.2% implants did not change and the peri-implant bone density of 30.8% implants decreased after 3 months following first surgery. 2. The crestal bone density of 53.9% implants decreased first 3 months after second surgery. The crestal bone density of 58.8% implants increased 9 months after second surgery. No density change was observed around the midportion of the implants after second surgery, 3. The amount of marginal bone loss between different kinds of implants showed no statistically significant differences (p>0.05). 4. More than 90% of total marginal bone loss recorded in a 9-month period occurred during the first 3 months.

  • PDF

RADIOPACITY COMPARISON OF TOOTH COLORED RESTORATIVE MATERIALS WITH DIGITAL RADIOGRAPHY (디지털 방사선사진술을 이용한 치아색 수복물의 방사선불투과도 비교)

  • Kim, Hyo-Jung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.499-508
    • /
    • 2000
  • The purposes of this study were to evaluate the validity of 2 kinds of digital radiography techniques in evaluating the radiopacity comparison of restorative materials and to determine the relative radiopacities of several kinds of compomer and flow able resin using these techniques. After taking radiographs of an aluminum step wedge, con-elation of optical density calibration curves were evaluated between conventional radiography with transmission densitometer and CD-Dent digital radiography (storage phosphor system) and between conventional one and RVG$^{(R)}$ digital radiography (CCD system). Compomers such as Dyract$^{(R)}$ AP, Compoglass$^{(R)}$, and Dyract flow$^{(R)}$, and flowable resins such as Ultraseal-XT$^{(R)}$ plus$^{TM}$, Revolution$^{TM}$, Aeliteflo$^{TM}$ and Tetric-flow$^{(R)}$ were used. Five specimens of 5mm in diameter and 2 mm thick were fabricated with each material. Radiopacities of the materials were measured using the above radiographic techniques and compared. The results were as follows: 1. When the optical density calibration curves were compared, conventional radiography and both CD-Dent and RVG$^{(R)}$ digital radiographies showed very high inverse correlations (${\gamma}$=-0.95, ${\gamma}$=-0.98 ; p<0.05). 2. All the tested restorative materials showed levels of radiopacity the same as or greater than that of dentin (p<0.05), Radiopacities of Dyract$^{(R)}$ AP, Compoglass$^{(R)}$, and Tetric flow$^{(R)}$ were greater than those of Revolution$^{TM}$, Aeliteflo$^{TM}$, or dentin (p<0.05). 3. Radiopacities of Dyract$^{(R)}$ AP, Compoglass$^{(R)}$, and Tetric flow$^{(R)}$ were shown to be greater than that of enamel when conventional radiography and CD-Dent digital radiography were used (p<0.05). Radiopacity of Dyract flow$^{(R)}$ was shown to be greater than that of Enamel when conventional radiography was used (p<0.05).

  • PDF