• Title/Summary/Keyword: Digital PWM

Search Result 373, Processing Time 0.031 seconds

Current Control of a 3$\phi$ PWM Converter Based on a New Control Model with a Delay and SVPWM effects (시지연과 SVPWM 영향이 고려된 새로운 제어 모델에 의한 3상 전압원 PWM 컨버터의 전류 제어)

  • Min, Dong-Ki;Ahn, Sung-Chan;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2018-2020
    • /
    • 1998
  • In design of a digital current controller for a 3$\phi$ voltage-source (VS) PWM converter, its conventional model, i.e., stationary or synchronous reference frame model, is used in obtaining its discretized version. It introduces, however, inherent errors since the following practical problems are not taken into consideration: the characteristics of the space vector-based pulsewidth modulation (SVPWM) and the time delays in the process of sampling and computation. In this paper, the new hybrid reference frame model of the 3$\phi$ VS PWM converter is proposed considering these problems. In addition, the direct digital current controller based on this model is designed without any prediction or extrapolation algorithm to compensate the time delay. So the control algorithm is made very simple. The validity of the proposed algorithm is proved by the computer simulation results.

  • PDF

Design and Simulation of analog controller for 3 Phase PWM Converter Based on Stationary Reference Frame (3상 PWM Converter를 위한 정지 좌표계법 Analog 제어기 설계 및 시뮬레이션)

  • 이영국;노철원;최종률
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.14-20
    • /
    • 1997
  • Due to several advantages of Pulse Width Modulated(PWM) Converter, such as unity power factor with low-harmonics and energy regeneration, PWM converter has been widely used in industrial application. In every application of energy conversion equipment, the design and implementation must be carried out considering performance and cost. High quality with low cost is the best choice for energy conversion equipment. High dc link voltage can reduce inverter and motor side losses and system dimension compare to low dc link voltage. Analog controller can make PWM converter cheaper without considerable degradation of the performance than digital controller. This paper shows the simplified analog controller-for 600V dc link voltage using stationary reference frame control and the simulation results.

  • PDF

An Improved Wavelet PWM Technique with Output Voltage Amplitude Control for Single-phase Inverters

  • Zheng, Chun-Fang;Zhang, Bo;Qiu, Dong-Yuan;Zhang, Xiao-Hui;Li, Rui
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1407-1414
    • /
    • 2016
  • Unlike existing pulse-width modulation (PWM) techniques, such as sinusoidal PWM and random PWM, the wavelet PWM (WPWM) technique based on a Harr wavelet function can achieve a high fundamental component for the output voltage, low total harmonic distortion, and simple digital implementation. However, the original WPWM method lacks output voltage control. Thus, the practical application of the WPWM technique is limited. This study proposes an improved WPWM technique that can regulate output voltage amplitude with the addition of a parameter. The relationship between the additional parameter and the output voltage amplitude is analyzed in detail. Experimental results verify that the improved WPWM exhibits output voltage control in addition to all the merits of the WPWM technique.

Control of Three Phase VSI using Fundamental Data of the Carrier and Signal for Reducing the THO (반송파와 신호파의 기본 데이터를 이용한 3상 전압형 인버터의 THD 저감 제어)

  • Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man;Park, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.34-37
    • /
    • 2001
  • This research suggested the new algorithm controlled by micro processor which is already stored by various PWM form of output voltage by using fundamental data of the carrier and signal. The determined PWM pattern is not concerned with the signal wave form and the new algorithm can obtain the desired pulse width by synchronous of carrier. The PWM wave can be controlled with real time by using extra hardware and digital software and to speed up program processing, the control signals to switch the power semi-conductor of three phase PWM inverter, simultaneously use the output signal by microprocessor and extra hardware, and control signal by software. In the end, this method was proved by applying to Three phase voltage source inverter.

  • PDF

MM PWM Scheme for High Performance and Harmonic Effects Minimization of VSI-IM Drive System (VSI-IM 구동시스템의 고동작 및 고주파영향 최소화를 위한 MM PWM 방식)

  • Min Soo Kim
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.1
    • /
    • pp.42-48
    • /
    • 1988
  • MM(multimode) PWM(pulse width modulation) Suitable for high performance and harmonic effects minimization of VSI (voltabge source invertetr)-IM (induction motor)drive system is proposed. The approximated optimal, suboptimal and optimal PWM are implemented in the low frequency range, while square wave operation is realized in the hibh frequency range. The pulse width Modulator is capable of generating control signals to a transistorized inverter operating at about 1KHz. All functions except digital comparison have been implemented in softyware making the scheme economical, flexible and reliable. Pulse width modulator is built and tested experimentally. In order to confirm the effectiveness and the reliability of the theoretical proposition, this scheme is applied to 1Hp, Three phase IM. As results, it is concluded that the scheme of MM PWM is superior to other conventional switching scheme through the discussions or analysis carried out on the items such as line-to-line voltage, current and spectrum of current harmonic components observed at the output terminal of inverter, noise level of motor.

  • PDF

Single-Phase Step-Up Five-Level Inverter with Phase-Shifted Pulse Width Modulation

  • Chen, Jianfei;Wang, Caisheng;Li, Jian
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.134-145
    • /
    • 2019
  • A single-phase step-up five-level inverter topology with a new phase-shifted pulse width modulation (PS-PWM) strategy is proposed in this paper. When compared with conventional single-phase five-level inverter topologies, the proposed topology can realize multilevel inversion with a double step-up ratio, a reduced number of switching devices and self-balanced capacitor voltages. When compared with the conventional PS-PWM strategy, the new PS-PWM strategy can be implemented with one carrier reduced, which makes it much easier to implement in a digital signal processor (DSP) system. Experimental results have been presented to verify the effectiveness of the proposed inverter and the PS-PWM strategy.

Predictive Current Control of Four-Quadrant Converters Based on Specific Sampling Method and Modified Z-Transform

  • Zhang, Gang;Qian, Jianglin;Liu, Zhigang;Tian, Zhongbei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.179-189
    • /
    • 2019
  • Four-quadrant converters (4QCs) are widely used as AC-DC power conversion interfaces in many areas. A control delay commonly exists in the digital implementation process of 4QCs, especially for high power 4QCs with a low switching frequency. This usually results in alternating current distortion, increased current harmonic content and system instability. In this paper, the control delay is divided into a computation delay and a PWM delay. The impact of the control delay on the performance of a 4QC is briefly analyzed. To obtain a fundamental value of AC current that is as accurately as possible, a specific sampling method considering the PWM pattern is introduced. Then a current predictive control based on a modified z-transform is proposed, which is effective in reducing the control delay and easy in terms of digital implementation. In addition, it does not depend on object models and parameters. The feasibility and effectiveness of the proposed predictive current control method is verified by simulation and experimental results.

A Study on the Charge Controller for Solar Street Lamp by Direct Duty Ratio Control (다이렉트 듀티비 제어에 의한 태양광 가로등용 충전제어기에 관한 연구)

  • Jang, Han-Gi;Lim, Jung-Yeol
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.118-123
    • /
    • 2015
  • According to the recent report, solar street lamp connected to a non Maximum Power Point Tracking(MPPT) charger, can lead to a system-wide decline in power output with as much as 30%. This paper proposes the charge controller with direct duty ration control for 250W solar street lamp in order to improve the efficiency of photovoltaic from these output power reduction. This paper covers the Pulse Width Modulation(PWM) controller and power conversion topology and analyze the MPPT method for charge controller. The power conversion part consists of push pull converter based on PWM controller using 8bit MCU in order to have lower manufacturing cost. The PWM controller with direct duty ratio control algorithm is constantly tracking the maximum power point of photovoltaic module and increases energy output power. The test results shows 97.1~97.4% MPPT efficiency and the experimental hardware is implemented based on the solar simulator condition for 241W. Thus, the implemented charge controller shows its feasibility for the real application, especially under solar street lamp.

Experimental Study on Performance Evaluation of System A/C using PWM or Inverter Method (Heating Characteristics at Low Temperature Conditions) (PWM 방식과 인버터 방식을 사용한 시스템 에어컨의 성능평가에 대한 실험적 연구(난방저온 특성))

  • 김대훈;전용호;권영철;이윤수;문제명;홍주태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.7
    • /
    • pp.551-556
    • /
    • 2003
  • The present study concerns an experiment on the heating characteristics of a system air-conditioner (A/C) using PWM method or inverter method at low temperature con-ditions. The compressors used are digital scroll type and BLDC inverter type. Under the low outside temperature condition, -5$^{\circ}C$, -1$0^{\circ}C$, -15$^{\circ}C$, heating capacities and COPs are mea-sured by the psychometric calorimeter using air enthalpy method. Also, outlet air temperatures at heating operation mode are measured at -5$^{\circ}C$, -1$0^{\circ}C$ and -15$^{\circ}C$. Experimental results show that COPs of the system A/C using a PWM method are more effective than those of the inverter method at heating operation mode. Although the heater is on, COPs of PWM method are similar to those of BLDC inverter method. Moreover, the heating capacities of PWM method at -5$^{\circ}C$, -1$0^{\circ}C$ and -15$^{\circ}C$ are larger about 10~20% and outlet air tempe-rature at -15$^{\circ}C$ is larger about 10%, compared to the inverter method.

An Optimized PWM Switching Strategy for an Induction Motor Voltage Control (전압제어 유도 전동기를 위한 최적 PWM 스위칭 방법)

  • Han, Sang-Soo;Chu, Soon-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.922-930
    • /
    • 2009
  • An optimized PWM switching strategy for an induction motor voltage control is developed and demonstrated. Space vector modulation in voltage source inverter offers improved DC-bus utilization and reduced commutation losses and has been therefor recognized the preferred PWM method especially in case of digital implementation. An optimized PWM switching strategy for an induction motor voltage control consists of switching between the two active and one zero voltage vector by using the proposed optimal PWM algorithm. The preferred switching sequence is defined as a function of the modulation index and period of a carrier wave. The sequence is selected by using the inverter switching losses and the current ripple as the criteria. For low and medium power application, the experimental results indicate that good dynamic response and reduced harmonic distortion can be achieved by increasing switching frequency.