• 제목/요약/키워드: Digital PV simulator

검색결과 6건 처리시간 0.019초

Design and Realization of a Digital PV Simulator with a Push-Pull Forward Circuit

  • Zhang, Jike;Wang, Shengtie;Wang, Zhihe;Tian, Lixin
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.444-457
    • /
    • 2014
  • This paper presents the design and realization of a digital PV simulator with a Push-Pull Forward (PPF) circuit based on the principle of modular hardware and configurable software. A PPF circuit is chosen as the main circuit to restrain the magnetic biasing of the core for a DC-DC converter and to reduce the spike of the turn-off voltage across every switch. Control and I/O interface based on a personal computer (PC) and multifunction data acquisition card, can conveniently achieve the data acquisition and configuration of the control algorithm and interface due to the abundant software resources of computers. In addition, the control program developed in Matlab/Simulink can conveniently construct and adjust both the models and parameters. It can also run in real-time under the external mode of Simulink by loading the modules of the Real-Time Windows Target. The mathematic models of the Push-Pull Forward circuit and the digital PV simulator are established in this paper by the state-space averaging method. The pole-zero cancellation technique is employed and then its controller parameters are systematically designed based on the performance analysis of the root loci of the closed current loop with $k_i$ and $R_L$ as variables. A fuzzy PI controller based on the Takagi-Sugeno fuzzy model is applied to regulate the controller parameters self-adaptively according to the change of $R_L$ and the operating point of the PV simulator to match the controller parameters with $R_L$. The stationary and dynamic performances of the PV simulator are tested by experiments, and the experimental results show that the PV simulator has the merits of a wide effective working range, high steady-state accuracy and good dynamic performances.

Practical Photovoltaic Simulator with a Cross Tackling Control Strategy Based on the First-hand Duty Cycle Processing

  • Wang, Shuren;Jiang, Wei;Lin, Zhengyu
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1018-1025
    • /
    • 2015
  • This paper proposes a methodological scheme for the photovoltaic (PV) simulator design. With the advantages of a digital controller system, linear interpolation is proposed for precise fitting with higher computational efficiency. A novel control strategy that directly tackles two different duty cycles is proposed and implemented to achieve a full-range operation including short circuit (SC) and open circuit (OC) conditions. Systematic design procedures for both hardware and algorithm are explained, and a prototype is built. Experimental results confirm an accurate steady state performance under different load conditions, including SC and OC. This low power apparatus can be adopted for PV education and research with a limited budget.

RTDS 시험모듈을 이용한 태양광 인버터의 성능시험에 관한 연구 (A Study on Performance Test of a Photovoltaic System Inverter using Real Time Digital Simulator (RTDS))

  • 김응상;김슬기;전진홍;안종보
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.325-333
    • /
    • 2007
  • A PV system inverter test module using RTDS was developed and performance test of a commercial PV inverter was carried out. The developed module consists of one RTDS hardware rack, RTDS software models representing PV array and simple distribution system, and two power amplifiers that was specifically designed for generating power corresponding to signals from RTDS. Performance test results verified effectiveness and reliability of the test module. It is expected that the developed test module may help PV inverter manufacturers improve ana test their systems in the developing stage.

Deve lopment of Simulator System for Microgrids with Renewable Energy Sources

  • Jeon, Jin-Hong;Kim, Seul-Ki;Cho, Chang-Hee;Ahn, Jong-Bo;Kim, Eung-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권4호
    • /
    • pp.409-413
    • /
    • 2006
  • This paper deals with the design and testing of a simulator system for microgrids with distributed generations. This system is composed of a Real Time Digital Simulator (RTDS) and a power amplifier. The RTDS parts are operated for real time simulation for the microgrid model and the distributed generation source model. The power amplifiers are operated fur amplification of the RTDS's simulated output signal, which is a node voltage of the microgrid and distributed generation source. In this paper, we represent an RTDS system design, specification and test results of a power amplifier and simulation results of a PV (Photovoltaic) system and wind turbine system. The proposed system is applicable for development and performance testing of a PCS (Power Conversion System) for renewable energy sources.

RTDS를 이용한 단독운전 태양광 발전시스템의 실시간 시뮬레이션 (A Real-Time Simulation Method for Stand-Alone PV Generation Systems using RTDS)

  • 김봉태;이재득;박민원;성기철;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.190-193
    • /
    • 2001
  • In order to verify the efficiency or availability and stability of photovoltaic(PV) generation systems, huge system apparatuses are needed, in general, in which an actual size of solar panel, a type of converter system and some amount of load facilities should be installed in a particular location. It is also hardly possible to compare a Maximum Power Point Tracking (MPPT) control scheme with others under the same weather and load conditions in an actual PV generation system. The only and a possible way to bring above-mentioned problem to be solved is to realize a transient simulation scheme for PV generation systems using real weather conditions such as insolation and surface temperature of solar cell. The authors, in this paper, introduces a novel simulation method, which is based on a real-time digital simulator (RTDS), for PV generation systems under the real weather conditions. Firstly, VI characteristic equation of a solar cell is developed as an empirical formula and reconstructed in the RTDS system, then the real data of weather conditions are interfaced to the analogue inputs of the RTDS. The outcomes of the simulation demonstrate the effectiveness of the proposed simulation scheme in this paper. The results shows that the cost effective verifying for the efficiency or availability and stability of PV generation systems and the comparison research of various control schemes like MPPT under the same real weather conditions are possible.

  • PDF

다이렉트 듀티비 제어에 의한 태양광 가로등용 충전제어기에 관한 연구 (A Study on the Charge Controller for Solar Street Lamp by Direct Duty Ratio Control)

  • 장한기;임중열
    • 전기전자학회논문지
    • /
    • 제19권1호
    • /
    • pp.118-123
    • /
    • 2015
  • MPPT가 미적용된 기존 태양광 가로등은 최대 30%의 출력저하를 유발한다고 보고되고 있다. 본 논문에서는 이러한 출력 저하로부터 태양광발전시스템의 효율을 향상시키기 위해 다이렉트 듀티비 제어 알고리즘을 적용한 250W 태양광가로등을 위한 충전제어기를 제안하였으며, PWM 제어기와 전력 토폴로지를 다루고, MPPT 알고리즘을 분석하였다. 전력변환부는 푸쉬풀 강압 컨버터로 구성하고, PWM 제어기는 8비트 MCU를 기반으로 해서 제조 원가를 낮추도록 하였다. 다이렉트 듀티비 제어 알고리즘을 적용한 PWM 제어기는 태양광모듈의 최대전력점을 지속적으로 추적하여 출력 전력을 증가시킨다. 실험 결과, 241W 태양광시뮬레이터 환경에서 97.1~97.4%의 MPPT 효율을 나타내었으며, 실제 응용제품에 적용할 수 있을 것으로 예상된다.