Digital manufacturing(DM) is the ability to describe every aspect of the design-to-manufacture process digitally-using tools that include digital design, CAD, office documents, PLM(Product Life-cycle Management) systems, analysis software, simulation, CAM software and so on. The major automotive companies are already deeply invested in DM with almost every process being digital rather than paper-based. But it has taken a long time for the digital process to mature into something usable and there have been some major barriers that have prevented from the DM becoming a reality. Thus many companies hesitate to make a decision of implementing the DM. This paper deals with a study investigating which factors are important for implementing the DM to industries successfully. The extended technology acceptance model (ETAM) is used as the relation model of cause and effect. The quality of hardware, the quality of software, the range of collaboration among companies and the preference of the user are defined as the external factors. Interview method is used for gathering input data, and the results are analyzed with SPSS. The results indicate that four external factors are effective on the successful implementation of DM, and the perceived usefulness is most important.
제2형 당뇨병은 고혈당이 특징인 대사성 분비 장애로 여러 합병증을 야기하는 질병이며, 장기적인 치료가 필요하기 때문에 매년 많은 의료비를 지출한다. 이를 해결하기 위해 많은 연구들이 있어왔지만, 기존의 연구들은 한 시점에서의 데이터를 학습시켜 예측함으로써 정확도가 높지 않았다. 그래서 본 연구는 제2형 당뇨병 발생 예측에 대한 정확도를 높이기 위하여 RNN을 이용한 모델을 제안하였다. 본 모델을 개발하기 위해 한국인유전체역학조사 지역사회 코호트(안산 안성) 데이터를 이용하였으며, 시간의 흐름에 따른 데이터들을 모두 학습시켜 당뇨병 발생 예측모델을 만들었다. 예측 모델의 성능을 검증하기 위해 기존의 기계 학습 방법인 LR, k-NN, SVM과 정확도를 비교하였다. 비교한 결과 제안한 예측모델의 accuracy는 0.92, AUC는 0.92로 다른 기계 학습 방법보다 높은 정확도를 보였다. 따라서 본 연구에서 제안한 제2형 당뇨병 발생 예측 모델을 활용하여 발병을 조기 예측함으로써 생활습관 개선 및 혈당조절을 통해 당뇨병 발병을 예방하고 늦출 수 있을 것이다.
Min Jung Ko;Dong A Park;Sung Hyun Kim;Eun Sook Ko;Kyung Hwan Shin;Woosung Lim;Beom Seok Kwak;Jung Min Chang
Korean Journal of Radiology
/
제22권8호
/
pp.1240-1252
/
2021
Objective: To compare the accuracy for detecting breast cancer in the diagnostic setting between the use of digital breast tomosynthesis (DBT), defined as DBT alone or combined DBT and digital mammography (DM), and the use of DM alone through a systematic review and meta-analysis. Materials and Methods: Ovid-MEDLINE, Ovid-Embase, Cochrane Library and five Korean local databases were searched for articles published until March 25, 2020. We selected studies that reported diagnostic accuracy in women who were recalled after screening or symptomatic. Study quality was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. A bivariate random effects model was used to estimate pooled sensitivity and specificity. We compared the diagnostic accuracy between DBT and DM alone using meta-regression and subgroup analyses by modality of intervention, country, existence of calcifications, breast density, Breast Imaging Reporting and Data System category threshold, study design, protocol for participant sampling, sample size, reason for diagnostic examination, and number of readers who interpreted the studies. Results: Twenty studies (n = 44513) that compared DBT and DM alone were included. The pooled sensitivity and specificity were 0.90 (95% confidence interval [CI] 0.86-0.93) and 0.90 (95% CI 0.84-0.94), respectively, for DBT, which were higher than 0.76 (95% CI 0.68-0.83) and 0.83 (95% CI 0.73-0.89), respectively, for DM alone (p < 0.001). The area under the summary receiver operating characteristics curve was 0.95 (95% CI 0.93-0.97) for DBT and 0.86 (95% CI 0.82-0.88) for DM alone. The higher sensitivity and specificity of DBT than DM alone were consistently noted in most subgroup and meta-regression analyses. Conclusion: Use of DBT was more accurate than DM alone for the diagnosis of breast cancer. Women with clinical symptoms or abnormal screening findings could be more effectively evaluated for breast cancer using DBT, which has a superior diagnostic performance compared to DM alone.
연구의 목적은 가정에서 안정 시 인체의 생리적 활력 정보를 센서와 ICT 정보 기술을 통해 연속적으로 수집하는 시스템과 수집된 정보를 이용하여 당뇨병증 유무를 예측하는 인공신경망 기계학습 방법과 필수적인 기본 변수 값을 제시하였다. 연구 방법은 정상인(DM-) 20명과 당뇨병(DM+) 15명을 대상으로 BCG와 ECG 센서의 심박수 측정값의 상관 관계를 분석하였으며 상관 계수는 R2=0.959이다. Artificial Neural Network(ANN) 기계학습 프로그램을 이용하여 당뇨병증 예측 가능성을 확인하였고 입력 변수는 심박변이도의 시계열정보와 심박수, 심박변이도, 호흡율, 박동량 정보, 최저혈압, 최고혈압, 년령, 성별이며 ANN 기계학습 예측 정확도는 99.53%이다. 그리고 향후 ANN 기계학습 방법을 활용하여 BMI 정보를 이용한 당뇨예측 모델, 심장 기능 장애 예측 모델, 수면장애 분석 모델 등의 계속적인 연구가 필요하다.
For several years, a research about the simulation for shipyard and shipbuilding has been performed. This research is based on the concept of PLM (Product Lifecycle Management) and DM (Digital Manufacturing). Global leading companies and research center are trying to get a good position of PLM, especially M&S field. Digital shipbuilding is to computerize shipyard facilities and shipbuilding processes, and to simulate expected scenarios of shipbuilding processes using a computer model in order to resolve a potential problem such as a bottleneck processes, and over loaded resources. In this paper, simulation methodology for shipbuilding is described. In addition, a local and global strategy for the use of simulation methodology is suggested. Finally, case studies about an indoor shop and an outdoor shop are described.
사과 '후지' 만개일의 예측을 위해 전국적으로 활용이 가능한 모델을 선발하기 위해 우리나라에서 사용된 사례가 있는 대표적인 모델 4종을 평가하였다. 이를 위해 우리나라 사과 주산지 6곳(포천, 화성, 거창, 청송, 군위, 충주)의 사과원에서 3년간 관측된 기온과 만개일을 수집하여 각 모델에 적용하고 모델의 예측력을 평가 하였다. 냉각량 추정을 위한 Dynamic(DM) 모델과 가온량 추정을 위한 Growing Degree Days(GDH) 모델을 순차적으로 결합한 모델이 예측력이 가장 좋았으며, Chill Days(CD) 모델의 예측력이 가장 낮았다. Development Rate Model 1(DVR1)은 화성 지역과 같이 일 최저기온이 높고 상대적으로 일 최고기온이 낮아 일교차가 작은 지역에서는 실측일보다 빠르게 예측되는 과소추정오차를 보였다. 따라서 단일 모델로 우리나라 전국적인 사과 '후지' 만개일 예측을 위해서는 휴면타파에 필요한 냉각량 산정을 위한 DM 모델과 휴면타파 이후 개화에 필요한 고온량 산정을 위한 GDH 모델이 결합된 DM+GDH 모델이 가장 효과적일 것으로 판단된다. 그러나 보다 광범위한 지역의 장기간의 자료 수집과 이를 이용한 평가가 필요하다.
The need to predict the rate of soil erosion, both under existing conditions and those expected to occur following soil conservation practice, has been led to the development of various models. In this study Morgan model especially developed for field-sized areas on hill slopes was applied to assess the rate of soil erosion using RS/GIS environment in the Dukchun river basin, one of two tributaries flowing into Jinyang lake. In order to run the model, land cover mapping was made by the supervised classification method with Landsat TM satellite image data, the digital soil map was generated from scanning and screen digitizing from the hard copy of soil maps, digital elevation map (DEM) in order to generate the slope map was made by the digital map (DM) produced by National Geographic Information Institute (NGII). Almost all model parameters were generated to the multiple raster data layers, and the map calculation was made by the raster based GIS software, IL WIS which was developed by ITC, the Netherlands. Model results show that the annual soil loss rates are 5.2, 18.4, 30.3, 58.2 and 60.2 ton/ha/year in forest, paddy fields, built-up area, bare soil, and upland fields respectively. The estimated rates seemed to be high under the normal climatic conditions because of exaggerated land slopes due to DEM generation using 100 m contour interval. However, the results were worthwhile to estimate soil loss in hilly areas and the more precise result could be expected when the more accurate slope data is available.
Purpose: To evaluate the accuracy of the 3D printed die models and to investigate its clinical applicability. Methods: Stone die models were fabricated from conventional impressions(stone die model; SDM, n=7). 3D virtual models obtained from the digital impressions were manufactured as a 3D printed die models using a 3D printer(3D printed die models;3DM, n=7). Reference model, stone die models and 3D printed die models were scanned with a reference scanner. All dies model dataset were superimposed with the reference model file by the "Best fit alignment" method using 3D analysis software. Statistical analysis was performed using the independent t-test and 2-way ANOVA (α=.05). Results: The RMS value of the 3D printed die model was significantly larger than the RMS value of the stone die model (P<.001). As a result of 2-way ANOVA, significant differences were found between the model group (P<.001) and the part (P<.001), and their interaction effects (P<.001). Conclusion: The 3D printed die model showed lower accuracy than the stone die model. Therefore, it is necessary to further improve the performance of 3D printer in order to apply the 3D printed model in prosthodontics.
본 논문은 음성신호 델타 변조(이하 DM이라고 약칭함)에 관한 step size의 적응(adaption)에 대하여 연구한 것이다. 선형 및 지수적인 적응 중에서 지수적 적응 앨고리즘을 채택하고 또 복호기에서의 오차회복시간을 단축시켰다. 그리고 한 앨고리즘에 대해서 비례 적산기를 이용하여 실제적인 논리회로 구성법을 제안하였으며 500Hz의 정현과 신호를 16kHz의 펄스로 표본화하여 제안회로에 대한 타당성을 실험적으로 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.