• Title/Summary/Keyword: Digital Imaging Sensor

Search Result 85, Processing Time 0.018 seconds

A New True Ortho-photo Generation Algorithm for High Resolution Satellite Imagery

  • Bang, Ki-In;Kim, Chang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.347-359
    • /
    • 2010
  • Ortho-photos provide valuable spatial and spectral information for various Geographic Information System (GIS) and mapping applications. The absence of relief displacement and the uniform scale in ortho-photos enable interested users to measure distances, compute areas, derive geographic locations, and quantify changes. Differential rectification has traditionally been used for ortho-photo generation. However, differential rectification produces serious problems (in the form of ghost images) when dealing with large scale imagery over urban areas. To avoid these artifacts, true ortho-photo generation techniques have been devised to remove ghost images through visibility analysis and occlusion detection. So far, the Z-buffer method has been one of the most popular methods for true ortho-photo generation. However, it is quite sensitive to the relationship between the cell size of the Digital Surface Model (DSM) and the Ground Sampling Distance (GSD) of the imaging sensor. Another critical issue of true ortho-photo generation using high resolution satellite imagery is the scan line search. In other words, the perspective center corresponding to each ground point should be identified since we are dealing with a line camera. This paper introduces alternative methodology for true ortho-photo generation that circumvents the drawbacks of the Z-buffer technique and the existing scan line search methods. The experiments using real data are carried out while comparing the performance of the proposed and the existing methods through qualitative and quantitative evaluations and computational efficiency. The experimental analysis proved that the proposed method provided the best success ratio of the occlusion detection and had reasonable processing time compared to all other true ortho-photo generation methods tested in this paper.

Development of Portable Laryngeal Stroboscope (휴대형 후두 스트로보스콥의 개발)

  • Lee, Jae-Woo;Kwon, Soon-Bok;Lee, Byung-Joo;Lee, Jin-Choon;Goh, Eui-Kyung;Chon, Kyong-Myong;Wang, Soo-Geun;Ro, Jung-Hoon
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.17 no.1
    • /
    • pp.28-37
    • /
    • 2006
  • Purpose: Evaluation of vocal cord vibration is very important in cases of voice disorders. There are several equipments for examining the vocal fold vibration such as laryngeal stroboscope, ultra high-speed digital imaging system, and videokymograph. Among these, laryngeal stroboscope is the most popular equipment because of easy to examine the laryngeal pathology. However, current laryngo-stroboscopes are too bulky to move and relatively expensive. The purpose of this research is to develope a portable laryngeal stroboscope of equivalent performance with the current equipments. Methods and Materials: Recently developed high luminescent white LEDs(light emitting diodes) are placed at the head of the endoscope as light sources for the CCD image sensor which is also placed at the head with imaging lens. This arrangement eliminates the bulky light source like expensive halogen or xenon lamps as well as the optical light guiding cables. The LEDs are controlled to flash in phase with the voice frequency of the examinee. The CCD captures these strobo images and converts them into video signals for examinations. Results: There was no functional differences between preexisting stroboscope and the newly developed stroboscope of this study. LED light sources and microprocessor based control circuits of the stroboscope enabled the development of flicker-less, hand-held, portable and battery-operating stroboscope. Conclusion: The developed stroboscope is cost-effective, small-sized, easy to use and very easy desirable to bring and to use in any place.

  • PDF

A study on electrical response property of photoconductor film for x-ray imaging sensor (X선 영상센서 적용을 위한 광도전체 필름의 전기적 응답특성 연구)

  • Kang, Sang-Sik;Kim, Chan-Wook;Lee, Mi-Hyun;Lee, Kwang-Ok;Moon, Yong-Soo;An, Sung-A;No, Ci-Chul;Park, Ji-Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.4
    • /
    • pp.29-33
    • /
    • 2009
  • Recently, the compound materials(a-Se, $HgI_2$, PbO, CdTe, $PbI_2$, etc.) that are used in flat panel x-ray imager have been studied for digital x-ray imaging. In this paper, the signal detection properties of $HgI_2$ and a-Se conversion layer, are compared. The thick $HgI_2$ film is fabricated by special particle-in-binder method and the conventional vacuum thermal evaporation is used for a deposition of a-Se film. And an electrical characteristic measurements were investigated about leakage current, signal response property and x-ray sensitivity. From the experimental results show that the $HgI_2$ film has a low operation voltage and high signal generation than that of a-Se.

  • PDF

Advanced LWIR Thermal Imaging Sight Design (원적외선 2세대 열상조준경의 설계)

  • Hong, Seok-Min;Kim, Hyun-Sook;Park, Yong-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.209-216
    • /
    • 2005
  • A new second generation advanced thermal imager, which can be used for battle tank sight has been developed by ADD. This system uses a $480\times6$ TDI HgCdTe detector, operating in the $7.7-10.3{\mu}m$ wavelength made by Sofradir. The IR optics has dual field of views such as $2.67\times2^{\circ}$ in NFOV and $10\times7.5^{\circ}$ in WFOV. And also, this optics is used for athermalization of the system. It is certain that our sensor can be used in wide temperature range without any degradation of the system performance. The scanning system to be able to display 470,000 pixels is developed so that the pixel number is greatly increased comparing with the first generation thermal imaging system. In order to correct non-uniformity of detector arrays, the two point correction method has been developed by using the thermo electric cooler. Additionally, to enhance the image of low contrast and improve the detection capability, we have proposed the new technique of histogram processing being suitable for the characteristics of contrast distribution of thermal imagery. Through these image processing techniques, we obtained the highest quality thermal image. The MRTD of the LWIR thermal sight shows good results below 0.05K at spatial frequency 2 cycles/mrad at the narrow field of view.

Development of the Accuracy Improvement Algorithm of Geopositioning of High Resolution Satellite Imagery based on RF Models (고해상도 위성영상의 RF모델 기반 지상위치의 정확도 개선 알고리즘 개발)

  • Lee, Jin-Duk;So, Jae-Kyeong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.1
    • /
    • pp.106-118
    • /
    • 2009
  • Satellite imagery with high resolution of about one meter is used widely in commerce and government applications ranging from earth observation and monitoring to national digital mapping. Due to the expensiveness of IKONOS Pro and Precision products, it is attractive to use the low-cost IKONOS Geo product with vendor-provided rational polynomial coefficients (RPCs), to produce highly accurate mapping products. The imaging geometry of IKONOS high-resolution imagery is described by RFs instead of rigorous sensor models. This paper presents four different polynomial models, that are the offset model, the scale and offset model, the Affine model, and the 2nd-order polynomial model, defined respectively in object space and image space to improve the accuracies of the RF-derived ground coordinates. Not only the algorithm for RF-based ground coordinates but also the algorithm for accuracy improvement of RF-based ground coordinates are developed which is based on the four models, The experiment also evaluates the effect of different cartographic parameters such as the number, configuration, and accuracy of ground control points on the accuracy of geopositioning. As the result of a experimental application, the root mean square errors of three dimensional ground coordinates which are first derived by vendor-provided Rational Function models were averagely 8.035m in X, 10.020m in Y and 13.318m in Z direction. After applying polynomial correction algorithm, those errors were dramatically decreased to averagely 2.791m in X, 2.520m in Y and 1.441m in Z. That is, accuracy was greatly improved by 65% in planmetry and 89% in vertical direction.

  • PDF