• Title/Summary/Keyword: Digital Hologram

Search Result 235, Processing Time 0.426 seconds

Rapid Calculation of CGH Using the Multiplication of Down-scaled CGH with Shifted Concave Lens Array Function

  • Lee, Chang-Joo;Lee, Seung-Yeol
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.51-59
    • /
    • 2022
  • Holographic display technology is one of the promising 3D display technologies. However, the large amount of computation time required to generate computer-generated holograms (CGH) is a major obstacle to the commercialization of digital hologram. In various systems such as multi-depth head-up-displays with hologram contents, it is important to transmit hologram data in real time. In this paper, we propose a rapid CGH computation method by applying an arraying of a down-scaled hologram with the multiplication of a shifted concave lens function array. Compared to conventional angular spectrum method (ASM) calculation, we achieved about 39 times faster calculation speed for 3840 × 2160 pixel CGH calculation. Through the numerical investigation and experiments, we verified the degradation of reconstructed hologram image quality made by the proposed method is not so much compared to conventional ASM.

A Prototype Architecture of an Interactive Service System for Digital Hologram Videos (디지털 홀로그램 비디오를 위한 인터랙티브 서비스 시스템의 프로토타입 설계)

  • Seo, Young-Ho;Lee, Yoon-Hyuk;Yoo, Ji-Sang;Kim, Man-Bae;Choi, Hyun-Jun;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.695-706
    • /
    • 2012
  • The purpose of this paper is to propose a service system for a digital hologram video, which has not been published yet. This system assumes the existing service frame for 2-dimensional or 3-dimensional image/video, which includes data acquisition, processing, transmission, reception, and reconstruction. This system also includes the function to service the digital hologram at the viewer's view point by tracking the viewer's face. For this function, the image information at the virtual view point corresponding to the viewer's view point is generated to get the corresponding hologram. Here in this paper, only a prototype that includes major functions of it is implemented, which includes camera system for data acquisition, camera calibration and image rectification, depth/intensity image enhancement, intermediate view generation, digital hologram generation, and holographic image reconstruction by both simulation and optical apparatus. The proposed prototype system was implemented and the result showed that it takes about 352ms to generate one frame of digital hologram and reconstruct the image by simulation, or 183ms to reconstruct image by optical apparatus instead of simulation.

Photon-counting digital holography

  • Hayasaki, Yoshio
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.10a
    • /
    • pp.165-166
    • /
    • 2009
  • A hologram was recorded with two-dimensional scanning of an optical fiber connected to a single-photon counting detector under ultra-weak illumination. The object image was clearly reconstructed in a computer from the hologram. The dependence of hologram quality on the illumination light intensity was estimated.

  • PDF

Characteristic Analysis for Compression of Digital Hologram (디지털 홀로그램의 압축을 위한 특성 분석)

  • Kim, Jin-Kyum;Kim, Kyung-Jin;Kim, Woo-Suk;Lee, Yoon-Huck;Oh, Kwan-Jung;Kim, Jin-Woong;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.164-181
    • /
    • 2019
  • This paper introduces the analysis and development of digital holographic data codec technology to effectively compress hologram data. First, the generation method and data characteristics of the hologram standard data set provided by JPEG Pleno are introduced. We analyze energy compaction according to hologram generation method using discrete wavelet transform and discrete cosine transform. The quantization efficiency according to the hologram generation method is analyzed by applying uniform quantization and non-uniform quantization. We propose a transformation method quantization method suitable for hologram generation method through transform and quantization experiments. Finally, holograms are compressed using standard compression codecs such as JPEG, JPEG2000, AVC/H.264 and HEVC/H.265 and the results are analyzed.

Network design for correction of deterioration due to hologram compression (홀로그램 압축으로 인한 열화 보정을 위한 네트워크 설계)

  • Song, Joon Boum;jang, Junhyuck;Hwang, Yunseok;Cho, Inje
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.377-379
    • /
    • 2020
  • The hologram data is having a dependence on the pixel pitch of the SLM (spatial light modulator) and the wavelength of light, and the quality of the digital hologram is proportional to the unit pixel pitch and the total resolution. In addition, since each pixel has a complex value, the amount of data in the digital hologram also increases exponentially, and the size is bound to be very large. Therefore, in order to efficiently handle digital hologram files, it is essential to reduce the file size through a codec and store it. Recently, research on enhancing image quality damaged by the codec is actively underway. In this paper, the hologram image of JPEG Pleno, which is the standard hologram data, was used, and the image quality damage that occurs whenthe holographic image is encoded and decoded through the JPEG2000, AVC, and HEVC codec is enhanced with a deep learning network to find out whether the image quality can be improved. we also compare and quantitatively find out the degree of improvement in image quality.

  • PDF

Error Analysis for Optical Security by means of 4-Step Phase-Shifting Digital Holography

  • Lee, Hyun-Jin;Gil, Sang-Keun
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.118-123
    • /
    • 2006
  • We present an optical security method for binary data information by using 4-step phase-shifting digital holography and we analyze tolerance error for the decrypted data. 4-step phase-shifting digital holograms are acquired by moving the PZT mirror with equidistant phase steps of ${\pi}/2$ in the Mach-Zender type interferometer. The digital hologram in this method is a Fourier transform hologram and is quantized with 256 gray level. The decryption performance of the binary data information is analyzed. One of the most important errors is the quantization error in detecting the hologram intensity on CCD. The greater the number of quantization error pixels and the variation of gray level increase, the more the number of error bits increases for decryption. Computer experiments show the results for encryption and decryption with the proposed method and show the graph to analyze the tolerance of the quantization error in the system.

Digital Watermarking using Of-axis Hologram (비축 홀로그램을 이용한 디지털 워터마킹)

  • 김규태;김종원;김수길;최종욱
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.183-194
    • /
    • 2004
  • We propose a now watermarking scheme that can be used to embed multiple bits and also resilient to geometrical transforms such as scaling, rotation, and cropping, based on off - axis holographic watermark that allows multiple watermark recovery without original content(cover image). The holographic watermark is that Fourier transformed digital hologram is embedded into cover image in the spatial domain. The proposed method has not only increased robustness with a stronger embedding but also imprescriptibility of the watermark in the evaluation process. To compare with the convention기 scheme, the spread spectrum, we embedded and recovered maximum 1,024 bits that consist of binary number over PSNR(peak signal-to-noise ratio) 39dB. And also, we computed robustness with BER(bit error rate) corresponding the above attack

A new objective quality metric for phase hologram processing

  • Oh, Kwan-Jung;Kim, Jinwoong;Kim, Hui Yong
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.94-104
    • /
    • 2022
  • Because of its convenience and compatibility with various image processing techniques, digital image representation of holograms is generally used in digital holography, and thus, quality assessment of digital holograms is an essential issue. This study proposes a new objective quality metric for digital phase hologram image processing. The proposed metric is based on a newly defined phase distortion created by taking the 2π periodicity of phase information into account. The experimental results show that the proposed metric correlates with reconstruction image quality better than the existing metric under random distortions and also works well with JPEG 2000 compression. It is expected to be broadly used in phase image processing and compression applications including phase holograms.

Fast Generation of Digital Hologram Based on Multi-GPU (Multi-GPU 기반의 고속 디지털 홀로그램 생성)

  • Song, Joong-Seok;Park, Jung-Sik;Seo, Young-Ho;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1009-1017
    • /
    • 2011
  • Fast generation of digital hologram is of importance for real-time holography broadcasting. In this paper, we propose such a method that parallelizes the Computer-Generated Holography (CGH) algorithm for digital hologram generation and make it faster using Multi Graphic Processing Unit (Multi-GPU) with help of the Compute Unified Device Architecture (CUDA) and the Open Multi-Processing (OpenMP). In addition, we propose optimization methods such as fixation variable, vectorization, and loop unrolling for making the CGH algorithm much faster. Experimental results show that our method is about 9,700 times faster than a CPU-based one.

Twin-Image Elimination in In-line Digital Holography Microscope (In-line 디지털 홀로그래피 현미경에서 쌍둥이 상 제거연구)

  • Cho, Hyung-Jun;Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.117-121
    • /
    • 2007
  • A fundamental problem in the in-line digital holography microscope is that the real image and virtual image and zero-order image are not separated spatially. In this paper, we have eliminated the zero-order noise by an averaging method and the twin image is divided using a geometrical set-up in an in-line digital holographic microscope. The size of the virtual image depends on the distance between the objective lens and the hologram plane and on the distance between the hologram plane and the image plane. We found that the virtual image size is smallest when the distance between the objective lens and the hologram plane is equal to the back focal length of the objective lens. We could divide the virtual image and real image by controlling the distance between the hologram plane and the objective lens.