• Title/Summary/Keyword: Digestive enzyme

Search Result 201, Processing Time 0.022 seconds

Post-Hatching Development of Digestive Organs, Intestinal Digestive Enzymes and Hepatic Antioxidant Defense System in White Leghorn Chicks (White Leghorn Chick의 초기 성장단계에서 소화기관의 발달, 소장의 소화 효소 및 간 조직의 항산화 방어작용)

  • Kim, Min-Jeong;Lee, Joo-Hyun;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.48 no.1
    • /
    • pp.31-39
    • /
    • 2021
  • We aimed to investigate the age-dependent development of digestive organs, intestinal enzymes, and hepatic antioxidant defense system in White Leghorn chicks aged 0, 3, 7, 14, and 21 days. Body weight (BW) did not significantly change between days 0 and 7 but significantly increased (P<0.05) after day 7. The relative liver weight (g/100 g of BW) was significantly lower at day 0 than at the other ages but markedly increased at days 3 and 7 (P<0.05). The relative pancreatic weight changed similar to the change in liver weight, with the maximum development at 7 days (P<0.05). The relative intestinal and mucosal tissue weights increased rapidly after hatching (P<0.05), with the maximum growth at 7 days. Furthermore, maltase and sucrase activities were significantly higher at day 3 than at day 0 (P<0.05). Leucine aminopeptidase activity was high at day 0 and remained constant as age increased. Superoxide dismutase and glutathione S-transferase activities in the liver were the lowest at day 0 but significantly increased after 7 days (P<0.05). Glutathione peroxidase activity increased significantly after day 14 compared with that at days 0 and 7 (P<0.05). Lipid peroxidation was not affected by age. In conclusion, the digestive organ weights and hydrolase activity of chicks increased rapidly during the first 3 or 7 days post-hatching. Hepatic antioxidant enzyme activity increased simultaneously with the increase in digestive organ weights, after 7 days.

Studies on the Preparation of Digestive Enzyme Tablets(III) (소화효소정제(消化酵素錠劑)의 제조(製造)에 관(關)한 연구(硏究) (제3보)(第3報))

  • Kim, Yong-Bae;Yi, Pyong-Kuk;Min, Shin-Hong;Shin, Hyun-Jong
    • Journal of Pharmaceutical Investigation
    • /
    • v.6 no.2
    • /
    • pp.69-82
    • /
    • 1976
  • Tablet product design problem was structured as constrained optimization problem and subsequently solved by multiple regression analysis and Lagrangian method of optimization. We used Lagrangian method for the purpose of finding the reason of the previous results. Biodiastase and cellulase were the enzymes, chosen, $Avicel{\circledR}$ and corn starch or calcium carboxy methyl cellulose were the binder and disintegrant, respectively. The effect of the dry binder and disintegrant concentration on tablet hardness, friability, volume, disintegration time was recorded. Optimization of this parameter was studied by using the constrained optimization method. In addition to finding a optimal condition of the enzyme tablets, the application of sensitivity analysis studies to such problems was also illustrated. In order to get a stable preparations of the enzyme tablets, accelerated test of coating tablets was carried out in this study. the results are as follows. 1) The minimum disintegration time, such that the average tablet volume did not exceed 0.0154 cubic inch and the average friability value did not exceed 0.62%, was 6.6 minutes and then $Avicel{\circledR}$ and corn starch were 15.4% and 17.2%, respectively. 2) The multiple-correlation coefficients for the regression models of tablet hardness, friability, disintegration time and volume were with in the 95% confidence range. 3) According to the test results, calcium carboxymethyl cellulose can be used as a disintegrant instead of corn starch.

  • PDF

Characteristics of digestive enzyme activity, antibiotic resistance, and pathogenicity of bacteria inhabited in animal feed resources (사료자원에 서식하는 세균의 소화효소활성, 항생제내성 및 병원성에 관한 특성)

  • Yi, Kwon Jung;Cho, Sang Seop;Kim, Soo-Ki
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • Among different types of spoilage, microbial contamination can cause feed decomposition, which results in decreases in feed intake and productivity, infection, and breeding disorder. During the storage time, various microbes have a chance to inoculate with depreciation of feed and to infect the animals. We investigated bacteria that inhabit diverse feed ingredients and complete feed which have been stored for a few months. We isolated and identified 30 genera and 62 species of bacteria. Among these 62 species, 21 species were of non-pathogenic bacteria, 18 species were of pathogenic bacteria, 9 species were of opportunistic pathogens, and 14 species were of unknown bacteria. Pantoea allii and 24 species showed proteolytic enzyme activity. We also confirmed that 6 species including Pseudomonas psychrotolerans showed ${\alpha}$-amylase activity, and 29 species including Burkholderia vietnamiensis showed cellulase activity. Microbacterium testaceum and 3 species showed resistance to Ampicillin, Kanamycin, Streptomycin, Gentamicin, Carbenicillin, and Erythromycin ($50{\mu}g/mL$). Using mealworm larvae (Tenebrio molitor L.) as a model for pathogenicity, we confirmed that 8 species including Staphylococcus xylosus had pathogenicity for mealworm larvae. Especially, Enterobacter hormaechei, Staphylococcus xylosus, and Staphylococcus hominis were reported as being pathogenic for humans. This research suggests that hygienic management of animal feed is essential because beneficial and harmful bacteria can inhabit animal feed differently during storage and distribution.

Biochemical and Genetic Characterization of Arazyme, an Extracellular Metalloprotease Produced from Serratia proteamaculans HY-3

  • Kwak, Jang-Yul;Lee, Ki-Eun;Shin, Dong-Ha;Maeng, Jin-Soo;Park, Doo-Sang;Oh, Hyun-Woo;Son, Kwang-Hee;Bae, Kyung-Sook;Park, Ho-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.761-768
    • /
    • 2007
  • Serratia proteamaculans HY-3 isolated from the digestive tract of a spider produces an extracellular protease named arazyme, with an estimated molecular mass of 51.5 kDa. The purified enzyme was characterized as having high activities at wide pH and temperature ranges. We further characterized biochemical features of the enzymatic reactions under various reaction conditions. The protease efficiently hydrolyzed a broad range of protein substrates including albumin, keratin, and collagen. The dependence of enzymatic activities on the presence of metal ions such as calcium and zinc indicated that the enzyme is a metalloprotease, together with the previous observation that the proteolytic activity of the enzyme was not inhibited by aspartate, cysteine, or serine protease inhibitors, but strongly inhibited by 1,10-phenanthroline and EDTA. The araA gene encoding the exoprotease was isolated as a 5.6 kb BamHI fragment after PCR amplification using degenerate primers and subsequent Southern hybridization. The nucleotide sequence revealed that the deduced amino acid sequences shared extensive similarity with those of the serralysin family of metalloproteases from other enteric bacteria. A gene(inh) encoding a putative protease inhibitor was also identified immediately adjacent to the araA structural gene.

Purification and characterization of Protease from Kyenegum (계내금(鷄內金) 단백질 분해 효소의 정제와 특성)

  • Kim, Do-Wan;Jo, Hye-Sim;Jeong, Yong-Jin;Kim, Kwang-Soo
    • The Korea Journal of Herbology
    • /
    • v.22 no.4
    • /
    • pp.21-28
    • /
    • 2007
  • Objectives : Kyenegum has been popularly used long as the digestive. The purpose of this study was to investigate the purification and characteristics of protease obtained from Kyenegum crude enzyme. Methods : Kyenegum protease was purified by precipitation with ammonium sulfate followed by SP-Spharose ion exchange chromatography. The molecular weight of Kyenegum protease was estimated by SDS-PAGE electrophoresis. Results : Kyenegum protease was 3,087 units/mg protein specific activity, 14.5 purification fold and 9.8 % recovery. The molecular weight of protease was estimated to be 18 kDa. The isoelectric point was pI 8.97 and values of Km and Vmax of its were 48 mg/mL and 2 units/min, respectively. Conclusion : The result suggests that the protease obtained from Kyenegum has excellent stability of temperature, acid and collagen substrate specificity.

  • PDF

Application of Membrane Bioreactor Technology for the Development of Bioactive Substances from Seafood Processing Byproducts

  • Kim, Se-Kwon;Mendis, Eresha
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.1
    • /
    • pp.9-21
    • /
    • 2006
  • Foods and related substances from diverse sources known to have a potential for disease risk reduction are called functional foods, while nutraceuticals are bioactive compounds isolated from food and sold in dosage form. Nutraceutical and functional food industries are rapidly growing in recent years and most of the cases development of these functional materials involves certain biotransformation processes. A number of bioactive compounds has been identified up to date and isolated from seafood related products through enzyme-mediated hydrolysis. The enzymatic bioconversion process require suitable biocatalysts and appropriate bioreactor systems to incubate byproducts with digestive enzymes. Membrane bioreactor technology is recently emerging for the development of bioactive compounds from seafood processing byproducts.

  • PDF

Epigallocatechin 3-gallate Binds to Human Salivary α-Amylase with Complex Hydrogen Bonding Interactions

  • Lee, Jee-Young;Jeong, Ki-Woong;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2222-2226
    • /
    • 2011
  • Amylase is a digestive enzyme that catalyses the starch into sugar. It has been reported that the green tea flavonoid (or polyphenols) (-)-epigallocatechin 3-gallate (EGCG) inhibits human salivary ${\alpha}$-amylase (HSA) and induced anti-nutritional effects. In this study, we performed docking study for seven EGCG-like flavonoids and HSA to understand the interaction mechanism of HSA and EGCG and suggest new possible flavonoid inhibitors of HSA. As a result, EGCG and (-)-epicatechin gallate (ECG) bind to HSA with complex hydrogen bonding interactions. These hydrogen bonding interactions are important for inhibitory activity of EGCG against HSA. We suggested that ECG can be a potent inhibitor of HSA. This study will be helpful to understand the mechanism of inhibition of HSA by EGCG and give insights to develop therapeutic strategies against diabetes.

Cellulase Activity of Symbiotic Bacteria from Snails, Achatina fulica

  • Kim, Jon Young;Yoon, Sae Min;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.5
    • /
    • pp.628-640
    • /
    • 2015
  • Cellulase is the key enzyme in the use of cellulose-based biomaterials. Because of its structure, cellulose is difficult to be degraded by enzymes. In order to utilize cellulose-based biomaterials efficiently, evolutionary wisdom of how to use enzymes accurately and harmoniously in a biological system is needed, such as the cellulose digestive system in animals. In this study, the symbiotic bacteria from snails, Achatina fulica, were identified and their cellulase activity was evaluated. The 16S rRNA sequence analysis of 100 aerobic bacteria showed that they belonged to 9 genus and almost half of the bacteria were Lactococcus spp. Among 100 identified strains, only two Aeromonas sp. strains showed cellulase activity. Aeromonas sp. KMBS020 had both endo-${\beta}$-glucanase and ${\beta}$-glucosidase activities but Aeromonas sp. KMBS018 had ${\beta}$-glucosidase activity only. None of the 100 bacterial colonies had any cellobiohydrolase activity.

Understanding Starch Utilization in the Small Intestine of Cattle

  • Harmon, David L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.7
    • /
    • pp.915-922
    • /
    • 2009
  • Ruminants possess the capacity to digest very large amounts of starch. However, in many cases diets approach 60% starch and even small inefficiencies present opportunities for energetic losses. Ruminal starch digestion is typically 75-80% of starch intake. On average, 35-60% of starch entering the small intestine is degraded. Of the fraction that escapes small-intestinal digestion, 35-50% is degraded in the large intestine. The low digestibility in the large intestine and the inability to reclaim microbial cells imposes a large toll on post-ruminal digestive efficiency. Therefore, digestibility in the small intestine must be optimized. The process of starch assimilation in the ruminant is complex and remains an avenue by which increases in production efficiency can be gained. A more thorough description of these processes is needed before we can accurately predict digestion occurring in the small intestine and formulate diets to optimize site of starch digestion.

Effects of Wolgukwhan Methanol Extract on Oxidative Liver Injury (월국환(越鞠丸) 메탄올 추출물이 산화적 간손상에 미치는 효과)

  • Moon Jin-Young
    • Herbal Formula Science
    • /
    • v.10 no.2
    • /
    • pp.85-95
    • /
    • 2002
  • Objectives: In traditional medicine, Wolgukwhan has been used for the treatment of digestive system disease, such as indigestion, brash, ructation, nausea and vomiting. This study was purposed to investigate the effects of Wolgukwhan methnol extract (WGWM) on oxidative liver cell injury. Methods: In vivo assay, we administerated acetaminophen(500mg/kg, i.p.) to starved mice 24hrs after pretreatment of WGWM for 6days. In the liver homogenates, lipid peroxide and glutathione(GSH) levels were measured. In addition, activities of hepatic enzyme, such as catalase, glutathione peroxidase(GPX), glutathione S-transferase(GST) were measured in the hepatic mitochondrial and cytosolic fractions. Results: In vivo administeration of WGWM showed effective inhibition of acetaminophen induced lipid peroxidation and elevations of glutathione level. The acetaminophen treatment resulted in a decrease of catalase, GPX and GST activities. By contrast, WGWM pretreatment increased compare to those of untreated groups. Conclusions: These results suggested that WGWM might protect against lipid peroxidation by free radicals, destruction of hepatic cell membranes.

  • PDF