• 제목/요약/키워드: Digestion time

검색결과 420건 처리시간 0.025초

혐기소화폐액의 응집제 특성에 따른 멤브레인 필터프레스의 고액분리 특성 (Solid-liquid Separation Characteristics of Membrane Filter Press according to Coagulant Properties of Anaerobic Digestion Waste Water)

  • 한성국;정희숙;송형운;김호;안대현
    • 유기물자원화
    • /
    • 제22권3호
    • /
    • pp.23-32
    • /
    • 2014
  • 최근 들어 유기성폐기물의 혐기소화를 이용한 처리(에너지화)가 증가하고 있다. 이에 따라서 혐기소화 후 발생하는 혐기소화폐액의 처리방안에 대한 연구도 증가하고 있다. 그러나, 혐기소화폐액의 특성상 문제로 고액분리에 매우 어려움이 있다.이에 본 연구에서는 CST와 TTF를 이용하여 혐기소화폐액에 대한 응집에 따른 고액분리 특성을 파악하였다. 또한 이러한 문제를 해결하기 위하여 실험실수준의 멤브레인 필터프레스를 제작하고, 혐기소화폐액에 적용하였다. 고분자 응집제는 7192PLUS와 1T60가 가장 적합한 것으로 확인되었으며, 최소 7192PLUS (200 mg/L), 1T60 (100 mg/L)이상의 투입이 필요하였다. 탈수효율을 평가하기 위하여 탈수케이크의 함수율과 탈리여액의 입자성 고형물을 이용하였다. 결과적으로, 멤브레인 필터프스를 이용하여 고액분리 시 입자성 고형물의 제거효율은 97.4%로 높게 나타났으며, 탈수케이크의 함수율은 65%이하로 나타났다.

도금공정 크롬시료 분석을 위한 Microwave Oven Digestion/Atomic Absorption Spectrophotometry 방법의 정확도 및 정밀도 평가 (Accuracy and Precision of Microwave Oven Digestion/Atomic Absorption Spectrophotometry for Analyzing Airborne Chromium Collected on MCE Filter in Plating Operation)

  • 이병규;이지태;신용철
    • 한국산업보건학회지
    • /
    • 제11권1호
    • /
    • pp.48-55
    • /
    • 2001
  • The purpose of this study was to evaluate the analytical accuracy and precision of microwave oven digestion/atomi absorption spectrophotometry (AAS) for analyzing airborne chromium collected on mixed cellulose ester membrane (M filter from the work environment, and to compare the accuracy and the precision with those of the National Institute for Occupational Safety and Health (NIOSH) Method #7024 hot plate digestion/AAS method. For this study, field air sample pairs were collected from a electroplating process, and spiked samples in a laboratory were prepared and using these samples. Two digestion methods were comp; and evaluated in terms of recovery rate and bias as indices of accuracy and coefficient of variation as a index of precision. The results and conclusions are as follows. In spiked samples, the accuracies (% mean recoveries) of hot plate/AAS and microwave oven/AAS method were 97.19%, 97.1%, respectively, and the precisions (pooled respectively, and the precisions (pooled coefficient of variance, $CV_{pooled}$) 6.93% and 3.88%, respectively. The biases of hot plate ani microwave oven methods were 4.56 - 14.7% and 2.22 - 7.42% respectively. There was no statistically significant difference between hot plate and microwave oven methods recovery rates of spiked samples (p>0,05). Also, no statistically significant difference was shown among the concentrations of air samples determined by two method (p>0.05). In conclusion, microwave oven/AAS method h excellent accuracy and precision, and advantages such as time-saving and simple procedure in comparison with the classical NIOSH method. Therefore, this method can be use widely to analyze airborne chromium collected on MCE filter from the work environments.

  • PDF

도시쓰레기 혐기성소화 운용 및 성능 지표 (Operational and Performance parameters of Anaerobic Digestion of Municipal Solid Waste)

  • 정재춘;박찬혁;손성명
    • 유기물자원화
    • /
    • 제10권4호
    • /
    • pp.86-95
    • /
    • 2002
  • 도시쓰레기의 혐기성 소화는 에너지원 및 온난화 가스 저감 문제 등에 의해 최근에 사회적 관심사가 되고 있다. 도시쓰레기는 고형분 함량이 높고 질소성분이 낮으며 셀루로스와 헤미셀루로스가 주성분으로 되어 있다. 도시쓰레기의 메탄 전화율은 대개 50%이며 $0.2m^2/kg$ VS에 해당한다. 고형물 농도가 높을수록 긴 수리학적 체류시간이 필요하며 주입물에 접종슬러지를 혼합하여야 한다. 도시쓰레기의 혐기성 소화 시 C/N비는 25가 상한이고 NH3-N의 적정농도는 700mg/L로 알려져 있다. pH조절을 위하여 흔히 석회와 탄산나트륨이 사용되고있는데 탄산나트륨을 3,500mg/L이상 첨가하면 나트륨 독성이 나타난다. 고온성 혐기 소화조는 운용과 관리가 어려우나 병원성 미생물 억제에 효과적인 것으로 알려져 있다. 도시쓰레기의 혐기성 소화공정의 최적화를 이룩하려면 소화공정에 관여하는 미생물의 작동기전에 대한 이해가 필요하다.

  • PDF

혐기성소화(嫌氣性消化)의 동역학(動力學) : 고부하시(高負荷時)의 온도영향(溫度影響) (Kinetics of Anaerobic Digestion : Temperature Effects on Highly Loaded Digesters)

  • 장덕;정태학
    • 대한토목학회논문집
    • /
    • 제8권4호
    • /
    • pp.59-67
    • /
    • 1988
  • 혐기성소화(嫌氣性消化)에 미치는 온도(溫度)의 영향(影響)을 가장 효과적으로 파악할 수 있는 체류시간(滯留時間) 5일(日)에서 인공(人工)슬러지를 대상으로 $35{\sim}55^{\circ}C$의 소화실험(消化實驗)을 행하였다. 소화온도증가(消化溫度增加)에 따라 메탄발효(醱酵)의 저해(沮害)가 감소하여, 중온(中溫) 및 중간영역(中間領域)의 온도(溫度)에서는 잔발효(酸醱酵)가 우세하였으나 $55^{\circ}C$에서는 활발한 메탄발효(醱酵)가 이루어졌다. 온도(溫度)의 변화(變化)는 미생물활성(微生物活性)뿐 아니라 슬러지의 물리(物理), 화학적(化學的) 특성(特性)에도 영향(影響)을 미친다고 추정된다. 또한 유입(流入) 슬러지의 희석(稀釋)에 의하여 소화저해(消化沮害)가 크게 감소하여 모든 온도(溫度)에서 활발한 메탄발효(醱酵)가 가능하였다. 소화효율(消化效率)은 수리학적(水理學的) 부하량외(負荷量外)에 유기물부하량(有機物負荷量)에도 지배받음을 알 수 있었다. 소화효율(消化效率)의 급격한 저해(沮害)가 발생된다고 보고된 $40{\sim}45^{\circ}C$에서도 뚜렷한 저해(沮害)는 없었다. 한편 소화온도증가(消化溫度增加)에 따라 소화(消化)슬러지의 침강특성(沈降特性)도 향상되었다.

  • PDF

고온 협기성 연속회분식 공정에 의한 도시하수슬러지 소화 (Thermophilic Sewage Sludge Digestion by Anaerobic Sequencing Batch Reactor)

  • 허준무;박종안;이종화;손부순;장봉기
    • 환경위생공학
    • /
    • 제14권3호
    • /
    • pp.130-138
    • /
    • 1999
  • The feasibility of municipal sewage sludge digestion was investigated by using thermophilic anaerobic sequencing batch reactor(ASBR). One-day settle time was enough for the high performance of solid-liquid separation. The conversion of semi-continuous mode to sequencing batch mode is easily achieved without any adverse effects, although the large amount of sludge equal to the volume ratio of 0.3~06 to reactor volume was added in the feed step of the start-up. The ASBRs had higher conversion capability of organics to biogas than the control reactor. Gas yields of the ASBRs were increased by the average of 50% over the control reactor across a range of hydraulic retention time(HRT)s from 10days to 5days. The thermophilic reactors showed higher gas production than mesophilic reactor. Removal efficiencies of organic matter exceeded 80% on the basis of supernatants, except that at the reactor. Solid-liquid separation was essential in the performance of the ASBR, especially, at the lower HFT. The ASBRs were highly efficient in the retention of activated biomass within the reactor. thus compensating for increased equivalent organic loading rate through increased solids retention times followed by the increased solids, while maintaining shorter HRTs.

  • PDF

Effects of Polyurethane as Support Material for the Methanogenic Digester of a Two-Stage Anaerobic Wastewater Digestion System

  • Woo, Kyung-Soo;Yang, Han-Chul;Lim, Wang-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.14-17
    • /
    • 2002
  • To increase the efficiency of a two-stage anaerobic wastewater digestion system, various polymers were added to the methanogenic reactor as supports. The addition of polyurethane addition (6%, w/v) to the methanogenic reactor facilitated the organic loading rate (2-day Hydraulic Retention Time), higher than that of the conventional methanogenic reactor (6-day HRT). During the operation of the polyurethane-added reactor, a significant decrease in the organic mass in the effluent (COD 5-6 kg/l) was achieved, compared to that of the conventional reactor (COD 15-20 kg/l). The methane gas production rate also improved about 3-fold in the polyurethane-added reactor. More biomass was found to accumulate in the polyurethane-liquid phase (volatile solid, 26-28kg) than in the free-liquid phase (volatile solid, 5- 7 kg/l) after 90 days of operation. A scaled-up experiment with a polyurethane-added 2.5-1 reactor confirmed the previous results, and no adverse effects such as plugging or channeling due to decreased efficiency was observed even after 4 months of operation.

도시하수슬러지의 혐기성소화시 고액분리 특성에 미치는 소화온도의 영향 (Effect of Digestion Temperature on the Solid-Liquid Separation Characteristics of Anaerobically Digested Municipal Sewage Sludge)

  • 한장운;장덕;김성순
    • 상하수도학회지
    • /
    • 제8권1호
    • /
    • pp.1-8
    • /
    • 1994
  • Laboratory experiments were conducted to investigate the effect of digestion temperature on the settleability and dewaterability of anaerobically digested sludge. The digesters were operated at a hydraulic retention time of 20 days with a loading rate of 0.63~0.66kg volatile solids per cubic meter per day at the temperature of $35^{\circ}C$ and $55^{\circ}C$. A mixed primary and secondary municipal sludge was used as a feed. The interface height of the sludge during settling test was recorded to identify settleability. As a measure of dewaterability of the sludge, specific resistance and capillary suction time were also measured with and without chemical conditioning. Higher digestion efficiency was obtained at $55^{\circ}C$ than $35^{\circ}C$. However, the settleability and dewaterability of the sludge at $35^{\circ}C$ were quite higher than those of the sludge digested at $55^{\circ}C$. The optimum dosages of ferric chloride for sludge conditioning were 0.4% and 0.6% at $35^{\circ}C$ and $55^{\circ}C$, respectively. The filtrate COD of the sludge digested at $55^{\circ}C$ was higher than at $35^{\circ}C$, which means that poor dewaterability of the sludge result in high filtrate COD.

  • PDF

대기중의 중금속 분석을 위한 여지의 전처리 방법에 관한 연구 (The Study on Pre-treatment Method of Filter for Analysing the Heavy Metals in Air Quality)

  • 김광래;이상칠;어수미;김민영;신재영;이재영
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2002년도 춘계 국제 학술대회
    • /
    • pp.16-19
    • /
    • 2002
  • This study was carried out to establish the standardized analysis method in order to decide accurate concentrations of hazardous metals in the air. Acid decomposition method used usually was compared to microwave digestion method. Comparing results of tested background concentration in blank filter, we found that the magnitude of element concentration was Na, Ca, K, Mg, Al and Ba by order. The element concentrations of Glass fiber filter were higher than those of Quartz fiber filter, and the number of undetected components in Glass fiber filter was lower than that in Quartz fiber filter. Thus it is supposed that the concentration of background elements in Glass fiber filter was higher than those in Quartz fiber filter The extraction rate of microwave digestion method was superior to those of acid decomposition method during the test of blank filter as well as SRM of NIST. In case of the SRM of NIST, the average extraction efficiency of acid decomposition Method and microwave pretreatment is 53.8∼82.7%, 81.3∼97.1%, respectively. This result might be caused by the closed system of Microwave, which make outflow and loss of components less. Also microwave digestion method has other merits such as the minimization of time, reagents, and contamination. Furthermore, if the extraction condition, extraction time and used acids are optimized, the better results will be represented.

  • PDF

IMPROVEMENT OF ANAEROBIC DIGESTION RATE OF BIOSOLIDS IN WASTE ACTIVATED SLUDGE(WAS) BY ULTRASONIC PRETREATMENT

  • Oh, Sae-Eun
    • Environmental Engineering Research
    • /
    • 제11권3호
    • /
    • pp.143-148
    • /
    • 2006
  • The ultrasonics is a new technology in waste activated sludge(WAS) treatment. Ultrasonic treatment is well known method for the break up of microbial cells to extract out a variety of intercellular materials inside microorganism cell. This study was done to investigate the effects of the ultrasonic frequency and power on disruption of biosolids in WAS and to examine the effect on methane production of WAS treated by ultrasonics. Biosolids disruption with ultrasound is more effective at ultrasonic frequency of 40 kHz and power of 0.3 watt/mL. In the digestion with WAS pretreated by sonication time for 10 minute at 40 kHz and 0.3 watt/mL, the total quantity of generated methane increased by 75%, as compared with experimental control(non-treatment).

혐기소화 시 미량 산소가 H2S 제거에 미치는 영향 (Effect of trace oxygen on H2S removal in anaerobic digestion)

  • 조은영;박광수;안종화
    • 산업기술연구
    • /
    • 제39권1호
    • /
    • pp.21-25
    • /
    • 2019
  • This work experimentally determined the effect of microaerobic condition on anaerobic digestion of thickened waste activated sludge in semi-continuous mesophilic digesters at hydraulic retention time of 20 days. The concentration of hydrogen sulfide was $7{\pm}2ppm$ at the microaerobic condition and $14{\pm}2ppm$ at the anaerobic condition. Removal efficiency of volatile solid was not significantly different between microaerobic ($40{\pm}8%$) and anaerobic ($38{\pm}8%$) conditions. There was no important difference between microaerobic ($1,352{\pm}98ml/d$) and anaerobic ($1,362{\pm}104ml/d$) conditions in the biogas production, either. Therefore, it could be concluded that the application of the microaerobic condition was an efficient method of the hydrogen sulfide removal from the biogas.