• Title/Summary/Keyword: Digestion temperature

Search Result 266, Processing Time 0.024 seconds

Assessment of Nitrogen Fate in the Soil by Different Application Methods of Digestate (혐기성 소화액의 농지환원에 따른 질소 거동)

  • Nkombo, Laure Lysette Chimi;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.35-45
    • /
    • 2021
  • Digestate or slurry produced from anaerobic digestion is mostly applied to crop lands for its disposal and recovering nutrients. However, minimizing nitrogen losses following field application of the digestate is important for maximizing the plant's nitrogen uptake and reducing environmental concerns. This study was conducted to assess the effects of three different biogas digestate application techniques (sawdust mixed with digestate (SSD), the hole application method (HA), and digestate injected in the soil (SD)) on nitrate leaching potential in the soil. A pot laboratory experiment was conducted at room temperature of 25 ± 2 ℃ for 107 days. The experimental results showed that sawdust application method turned out to be appropriate for quick immobilization of surplus N in the form of microbial biomass N, reflecting its lower total nitrogen and NH4-N contents and low pH. The NH4-N and total nitrogen fate in the soil fertilized with manure showed no statistically significant (p > 0.05) differences between the different methods applied during the incubation time under room temperature. In contrast, NO3-N concentration indicates significant reduction in sawdust treatment (p < 0.05) compared to the control and other application methods. However, the soil sawdust mixed with digestate was more effective than the other methods, because of the cumulative labile carbon contents of the amendment, which implies soil net N immobilization.

Effect on Digestion Efficiency by Adding Microbial Agent in Mesophilic Two-stage Anaerobic Digester (중온2단혐기성소화조에 미생물제재 주입시 소화효율에 미치는 영향)

  • Jung, Byung-Gil;Kim, Seok-Soon;Kang, Dong-Hyo;Sung, Nak-Chang;Choi, Seung-Ho;Lee, Hee-Pom
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.3
    • /
    • pp.75-86
    • /
    • 2003
  • In the near future, the capacity of conventional anaerobic digester is thought to be insufficient because of the increase of the total solids from expansion of intercepting sewer, sewage quantity and direct input of night soil from near apartment districts. The objectives of this study was to investigate the improvement of digestion efficiency using microbial agent(Bio-dh). The system was a pilot-scale, two-staged, anaerobic sludge digestion system. The first-stage digester was heated and mixed. The agitation velocity of the first-stage digester was 120rpm. The second-stage digester was neither heated nor mixed. The Digestion temperature was kept at $35{\pm}1^{\circ}C$ The detention time of digester was 19 days. The dosage of sewage sludge and microbial agent were $0.65m^3/day$ and $0.5{\ell}/day$, respectively. The experiments was run for 25days. Three times a week, $COD_{Mn}$ and SS of effluent, TS, VS, and biogas production rate were measured. Temperature, pH, and alkalinity were measured daily. The results were as follows ; Without microbial agent, digestion efficiencies ranged 46.0%~50.9%(mean=48.6%), with microbial agent(Bio-dh), digestion efficiencies ranged 52.8%~57.3%(mean=54.2%). Consequently, microbial agent(Bio-dh) increased the sludge digestion efficiency about 12%. Also, Without microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 1,639mg/L, 4,888mg/L respectively. With microbial agent, the mean concentration of $COD_{Mn}$ and SS of second-stage digester effluent were 859mg/L, 2,405mg/L respectively. Consequently, microbial agent(Bio-dh) increased the removal efficiency of $COD_{Mn}$ and SS about 47.6% and 50.8%, respectively.

  • PDF

Methane Production by Anaerobic Digestion of Grain Dust in a Plug Flow Digester (플러그 흐름 소화기 속에서 Grain Dust의 혐기성 소화에 의한 메탄가스 생산)

  • Tae-Kyung Yoon;Sung-Bum Han;Moon-Ki Park;Seung-Koo Song
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.311-316
    • /
    • 1993
  • Methane production from grain dust was studied using a 3 L laboratory-scale anaerobic plug flow digester. The digester was operated at; temperature of 35, 45, and 55$^{\circ}C$; hydraulic retention time(HRT) of 6 and 12 days; and influent concentration($S_o$) of 7.8 and 9.0 % total solids(%TS). With ten different operation conditions, this study showed the significant effects of temperature, hydraulic retention time, and influent concentration on methane production. The highest methane-production rate achieved was 1.903 (L methane) /(L digester)(day) at 55$^{\circ}C$, 6 days HRT, and $S_0$ of 7.8 %TS. A total of 3.767 L of biogas per day with a methane content of 50.57 % was obtained from this condition. The ultimate methane yield($B_0$) was found to be a function of temperature and influent concentration, and was described as : $B_0$ = 0.02907T-0.1263-0.00297(T-10)(%TS), where TS is the total solids in the liquid effluent, and T is temperature($^{\circ}C$). Our results showed that thermophilic condition is better than mesophilic for grain dust stabilization in an anaerobic plug flow digester.

  • PDF

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

Studies on the Preparation of Weanling Food from Soybean (Part 1) -Conditions for the digestion of soybean protein by Eezyme from Aspergillus- (대두를 이용한 이유식 제조에 관한 연구(제 1보) -효소를 이용한 대두단백질 분해 적정 조건결정 및 조제에 관하여-)

  • Kim, Z.U.;Cho, M.J.
    • Applied Biological Chemistry
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 1970
  • In order to prepare digested Protein source for the Weanling Food from soybean, an attempt was made to decompose steamed soybean protein to amino acids and peptides by protease and cellulase produced from Aspergillus niger and Aspergillus sojae. In this paper, the optimum condition for digestion of soybean protein were studied and also investigated the effects of decolorization of it. As the results, followings were obtained; 1. As steaming conditions, a treatment under 15 lb of pressure and 10 minutes of heating shows most effective. 2. The optimum pH of Asp, sojae enzyme for the digestion of soybean protein is 6.0, while that of Asp. niger enzyme is 4.4. In successievly-decomposing with Asp. sojae and Asp. niger, it shows the most effective on ratio of water-soluble-nitrogen to total nitrogen and amino-nitrogen to total nitrogen than any other separate treatments. 3. The suitable amount of the enzyme solution to that of the soybean substrate paste, in volume, is 1 : 2. 4. Digestion ratio of soybean protein indicates the gradual and steady effects of increasing time of digestion, but 8 hour-digestion regarding to putrefaction was suitable. 5. The most effective decolorization was successively passed on culumns of active carbon and anion exchanger (Dowex 2-x-8) at room temperature. In separate treatments, the effective order of decolorization was as follows; (Dowex 2-x-8)>Active carborn>Amberite IR-120 6. The powder type of the soy protein source obtained by concentration below $60^{\circ}C$ contains 12.51% of moisture, 66.31% of protein, 4.25% of fat, 12.75% of carbohydrate, 4.18% of ash.

  • PDF

Integrated Digestion of Thermal Solubilized Sewage Sludge to Improve Anaerobic Digestion Efficiency of Organic Waste (유기성 폐기물의 혐기성 소화효율 향상을 위한 열가용화 하수슬러지의 통합소화)

  • Oh, Kyung Su;Hwang, Jung Ki;Song, Young Ju;Kim, Min Ji;Park, Jun Gyu;Pak, Dae Won
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • Studies for improving the efficiency of the traditional anaerobic digestion process are being actively conducted. To improve anaerobic digestion efficiency, this study tried to derive the optimal pretreatment conditions and mixing conditions by integrating the heat solubilization pretreatment of sewage sludge, livestock manure, and food waste. The soluble chemical oxygen demand (SCOD) increase rate of sewage sludge before and after heat solubilization pretreatment showed an increased rate of 224.7% compared to the control group at 170℃ and 25 min and showed the most stable increase rate. As a result of the biomethane potential test of sewage sludge before and after heat solubilization pretreatment, the total chemical oxygen demand (TCOD) and SCOD removal rates increased as the heat solubilization temperature increased, but did not increase further at temperatures above 170℃. In the case of methane generation, there was no significant change in the cumulative methane generation from 0.134 to 0.203 Sm3-CH4/kg-COD at 170℃ for 15 min. As a result of the integrated digestion of organic waste, the experimental condition in which 25% of the sewage sludge, 50% of the food waste, and 25% of the livestock manure were mixed showed the highest methane production of 0.3015 m3-CH4/kg-COD, confirming that it was the optimal mixing ratio condition. In addition, under experimental conditions mixed with all three substrates, M4 conditions mixed with 25% sewage sludge, 50% food waste, and 25% livestock manure showed the highest methane generation at 0.2692 Sm3-CH4/kg-COD.

Effect of Temperature-increase Rate and Terminal Temperature on the Solubilization of Sewage Sludge using Microwave Irradiation

  • Park, Woon-Ji;Ahn, Johng-Hwa;Lee, Chan-Ki
    • Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • Solubilization of sewage sludge creates favorable conditions for anaerobic microorganisms to produce biogas. In this paper, we quantify the effect of heating pretreatment on the degree of solubilization of sewage sludge. The pretreatment process was carried out using a lab-scale industrial microwave unit (2450 MHz frequency). Response surface analysis was applied to determine the combination of temperature-increase rate (ramp rate) (2.9 to 17.1 ${^{\circ}C}$/min) and terminal temperature (52 to 108${^{\circ}C}$). Both ramp rate and temperature significantly affected the solubilization degree of sludge. Within the design boundaries, the conditions predicted to maximize the solubilization degree of 15.8% were determined to be 2.9 ${^{\circ}C}$/min and 104${^{\circ}C}$.

A Study of Milk Waste Recycling as an Energy Source and Reduction of Pollution by Anaerobic Digestion (혐기성 소화를 통한 유가공 폐기물의 에너지원으로의 재활용과 오염 감소 방안에 관한 연구)

  • Lim, Samuel;Lim, Hyun-Ji;Jung, Kook-Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • We confirmed methane production and reduction of pollution during anaerobic digestion of milk waste and analyzed the economic potential of using milk waste as a renewable energy source. The milk waste sludge was obtained from the Pasteur milk factory and processed by anaerobic digestion to produce methane. The methane production from two completely mixed tank reactors with an effective capacity of 6 ${\ell}$, 15 days of hydraulic retention time (HRT), and a mid-temperature of $35^{\circ}C$ averaged 4.11 ${\ell}$/day. The total chemical oxygen demand (TCOD) during production decreased from an initial 31,416 mg/${\ell}$ to 13,500 mg/${\ell}$, showing a maximum TCOD removal efficiency of 60%. When HRT was reduced to 12 days, methane production increased by 44% under a high-temperature condition of $55^{\circ}C$. An economic analysis based on these results was applied to a Korean milk factory of typical size and demonstrated that the installation of an anaerobic digester could provide sufficient economic profit.

  • PDF

EFFECT OF SOYBEAN EXTRUSION ON NITROGEN METABOLISM, NUTRIENT FLOW AND MICROBIAL PROTEIN SYNTHESIS IN THE RUMEN OF LAMBS

  • Ko, J.Y.;Ha, J.K.;Lee, N.H.;Yoon, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.3
    • /
    • pp.571-582
    • /
    • 1992
  • Soybeans were dry extruded at three different temperatures (125, 135 and $145^{\circ}C$) for 30 s. Four lambs fitted with cannulae in the rumen and abomasums were used in a balanced $4{\times}4$ Latin square design. Lambs were fed at 2 h intervals for 12 times a day with automatic feeder to maintain steady state conditions in digestive tract. A dual-phase marker system was used to estivate ruminal flow rate of both liquid and solid digesta. Objectives of this study were to determine the effect of extrusion temperature of raw soybean on the ruminal liquid and solid dilution rate, nitrogen digestion and flow at the abomasum and availability of amino acid in lambs. There were no significant effects of extrusion on liquid and solid dilution rate, and liquid volume. Ruminal liquid flow rate was not influenced by extrusion and ranged from 389 to 435 ml/hr. Extrusion had no influence on ruminal OM digestion and flow rate to the abomasums. Dietary N flow to the abomasums increased (p < 0.05) as extruding temperature increased. Extruding temperature had a significant effect (p < 0.05) on flow of N escaping ruminal degradation and ranged from 34.91 to 57.38%. Microbial N synthesized/kg OMTDR ranged from 27 to 37 g and highest with $145^{\circ}C$ ESB diet. Extrusion decreased the amount of degradable amino acid in the rumen and increased the supply of amino acid to the lower gut, especially with 135 and $145^{\circ}C$ ESB diets.