• Title/Summary/Keyword: Digestion temperature

Search Result 266, Processing Time 0.03 seconds

Comparison of Anaerobic Digestion Efficiency with Different Temperature of Food Wastes (음식물류폐기물의 성상별 온도변화에 따른 혐기성소화 효율 비교 연구)

  • Hwang, Kwanghyun;Kim, Dongik
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.332-339
    • /
    • 2019
  • A comparative study on the anaerobic digestion efficiency according to the temperature change was conducted considering the characteristics of domestic food wastes with high water content of about 80 % or more. The substrate was tested for anaerobic digestion efficiency in two substrates, a liquid component separated naturally from food waste and food waste itself. In the anaerobic digestion experiments, the digestion efficiency was the highest at $55^{\circ}C$ (thermophilic temperature). However, the digestion efficiency at $45^{\circ}C$(middle high temperature) was lower than that at $35^{\circ}C$(mesophilic temperature). The comparison of general food wastes anaerobic digestion requiring 30 days of hydraulic retention time to the liquid component indicated a stable digestion efficiency even after 15 days of hydraulic retention time.In the experiments conducted on food waste, the digestion efficiency at $55^{\circ}C$ was higher than that at $35^{\circ}C$. When the food waste, especially the liquid component originating from food waste, is treated by anaerobic digestion method, the mesophilic temperature and thermophilic temperature conditions are more favorable in the digestion efficiency than the middle high temperature ($45^{\circ}C$). However, when applying thermophilic or mesophilic temperature anaerobic digestion process operation in the field, the amount of energy input should be considered.

Mesophilic and Thermophilic Anaerobic Digestion of Swine Manure (中溫및 高溫嫌氣性消化에 의한 豚糞處理)

  • Kim, Nam Cheon;Min, Kyung Sok;Chung, Paul Gene
    • Journal of Environmental Health Sciences
    • /
    • v.10 no.1
    • /
    • pp.107-117
    • /
    • 1984
  • This study was made to evaluate the temperature effects on anaerobic digestion of swine manure. A laboratory single-stage, high-rate, anaerobic digester was operated at 10, 20 and 30 day's HRT at the temperature of 35$\circ$C or 55$\circ$C. The conclusions from this study are as follows: (1) COD and BOD reductions were similar in both the mesophilic and thermophilic digestions. (2) With thermophilic digestion, volatile reduction increased to 67%, as compared with 60% of mesophilic digestion. With thermophilic digestion, the pH increased to 8.5 as compared with 8.0 of mesophilic digestion. With thermophilic digestion, the concentration of volatile acid increased to 763 mg/l, as compared with 250 mg/l of mesophilic digestion. While the gas was produced by mesophilic digestion at 0.74m$^3$/kg of VS fed, it increased to 0.87 m$^3$/kg VS fed by thermophilic digestion. The refractory VS was about 25% of the infiuent VS.

  • PDF

Development of a Temperature Controller for Microwave-assisted Digestion System for Agricultural Samples (농식품 시료 전처리를 위한 마이크로웨이브 분해기용 온도 제어장치 개발)

  • Mo, Chang-Yeon;Kim, Gi-Young;Kim, Hak-Jin;Kim, Yong-Hun;Yang, Kil-Mo;Lee, Kang-Jin
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2009
  • Microwave digestion is a preferred pretreatment method for agricultural samples because of its quick chemical reaction and minimum loss of analytes. In this research, a feedback temperature controller was developed to control the temperature inside a vessel for the microwave-assisted digestion system. An existing industrial microwave oven was fitted with the temperature controller for controlling inside temperature of the vessel. Four control methods, On/Off, proportional (P), proportional integral (PI), and proportional integral derivative (PID) were used and compared. Experimental results showed that PID control produced best temperature control performance. The PID controller could maintain the temperature of water sample and rice sample in the digestion system with error range of $-2.5{\sim}3.3^{\circ}C$ and $-1.9{\sim}0.5^{\circ}C$ at set temperature of $170^{\circ}C$, respectively.

Investigation of the Effects of Environment Friendly Digestion Process on the Rice Hull (왕겨의 고도활용을 위한 친환경 고온고압 증해처리 효과)

  • Lee, Young-Ju;Jung, Woong-Ki;Sung, Yong-Joo
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.139-150
    • /
    • 2011
  • The effects of the high pressure and the high temperature digesting process with water on the properties of rice hull were investigated in this work. Two temperature condition such as $160^{\circ}C$ and $180^{\circ}C$ and thee treatment time such as 15 min, 30 min and 45 min were applied for this treatment. The pH of extract after the digestion process decreased as the temperature and the treatment time of the digestion were increased. The ash content and lignin content were not decreased by the the digestion. The structure of rice hull after digestion treatment became more weak, the better efficiency of the fiberization with PFI-Mill was shown for the digestion treated rice hull with the higher temperature and the longer treatment time.

  • PDF

Aerobic and Anaerobic Digestion of Swine Manure (好氣性 및 嫌氣性 消化에 의한 豚糞處理)

  • Kim, Nam Cheon;Min,, Dal Ki
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.2
    • /
    • pp.43-49
    • /
    • 1988
  • This study was conducted to evaluate the organic removal efficiencies and sludge production in aerobic and anaerobic digestion of swine manure. A laboratory single-stage, high-rate, anaerobic digester was operated at 5, 10, 25 and 30 day's HRT at the temperature of 35$\circ$C, and also aerobic digester operated at 10, 20 and 28.6 day's HRT at the temperature of 20$\circ$C. The conclusions from this study are as follows: 1. While the BOD removal efficiency by anaerobic digestion was 30 to 75%, it was 99% over by aerobic digestion. 2. The sludge production was similar in both aerobic and anaerobic digestion. 3. The gas production was 0.21 to 0.55 m$^3$/kg VS fed by anaerobic digestion.

  • PDF

Kinetics of Anaerobic Digestion : Temperature Effects on Highly Loaded Digesters (혐기성소화(嫌氣性消化)의 동역학(動力學) : 고부하시(高負荷時)의 온도영향(溫度影響))

  • Chang, Duk;Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.59-67
    • /
    • 1988
  • Anaerobic digestion at the temperature of $35-55^{\circ}C$ was conducted using an artificial sludge of uniform composition. The hydraulic retention time of 5 days was chosen because the temperature effect was effectively shown at a high loading. Inhibition of the methane fermentation decreased as the temperature increased. Acid fermentation was prevalent at the mesophilic and intermediate temperatures, while active methane fermentation took place at $55^{\circ}C$. Temperature not only affects activity of the microorganisms, but also affects physical and chemical properties of the sludge, Digestion inhibition was much reduced when the feed sludge was diluted, and active methane fermentation was possible at all temperatures. The digestion efficiency was governed by the organic loading rate as well as the hydraulic 10ading rate. No reduction of the digestion efficiency at $40-45^{\circ}C$, which had been referred to a critical temperature range, was observed. The digestion efficiency increased monotonically from mesophilic to thermophilic range. Improved settling properties of digested sludge was also recorded at higher temperatures.

  • PDF

Analysis of Asbestos Fiber in Lungs by Transmission Electron Microscopy According to the Digestion Method (회화방법에 따른 폐 내 석면섬유의 투과전자현미경 분석)

  • Han, Jeong Hee;Chung, Young Hyun;Yang, Jung Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.333-340
    • /
    • 2013
  • Objectives: This study was designed to establish an accurate analytical method for asbestos in a biological sample for determining occupational asbestos-related diseases and relief of the health effects of environmental asbestos. Methods: Biological samples were obtained from lungs of rats following intratracheal instillation of asbestos(Chrysotile, anthophyllite) and were prepared according to digestion method(Wet digestion, high temperature ashing, low temperature ashing). The samples were then analyzed for asbestos fibers using a transmission electron microscope equipped with an energy dispersive X-ray spectrometer. Results: Low temperature plasma ashing removed more of the organic components and reduced fiber loss compared to the wet digestion method, making specimens so prepared more suitable for transmission electron microsocpy. Conclusions: The low temperature ashing technique is the most accurate method for analyzing asbestos in biological samples.

Kinetics of Anaerobic Digestion: A Comparative Study on Mesophilic and Thermophilic Anaerobic Digestion (혐기성소화(嫌氣性消化)의 동력학(動力學) : 중온(中溫) 및 고온혐기성소화(高溫嫌氣性消化)의 비교연구(比較研究))

  • Chang, Duk;Chung, Tai Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.1-11
    • /
    • 1987
  • Comprehensive laboratory experiments including digestion failures were conducted to identify differences between mesophilic and thermophilic digestion. Critical HRT was found to be near 10days for mesophilic and near 5days for thermophilic digestion. Inhibition occurred rapidly when operated below critical HRT. However, inhibition at mesophilic condition was much greater than that at thermophilic condition. Although digester performances were similar above critical HRT of mesophilic digestion, thermophilic digestion was considerably advantageous below this HRT. Thermophilic digestion produced smaller amount of sludges which had significantly higher settling velocity and lower specific resistance. Reaction rates also clearly demonstrated temperature and HRT effects on digestion. It was also found that gas production rates increased linearly with increasing reaction rates regardless of temperature and their relationships were almost identical at mesophilic and thermophilic temperature.

  • PDF

Influence of Digestion Temperature on the Extraction of Soil Heavy Metal by Korean Ministry of Environment Standard Method (토양오염공정시험기준에 따른 토양 중금속 추출 시 분해 온도가 미치는 영향)

  • Shin, Gunhwan;Park, Hyunjung;Oh, Kiseok;Jung, Gain;Shin, Dongjun;Lee, Goontaek;Joo, Changkyu;Lee, Sangmo;Kim, Taeseung
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.3
    • /
    • pp.11-21
    • /
    • 2022
  • The purpose of this study was to evaluate the influences of digestion temperature on the extraction of heavy metals from soil using the standard method established by Korean Ministry of Environment (KMES). A total of 7 heavy metals (As, Cd, Cr, Cu, Ni, Pb and Zn) in soil samples were extracted at varying digestion temperatures [(66 ± 2.0)℃, (73 ± 1.9)℃, (80 ± 1.3)℃, (85 ± 1.7)℃, (92 ± 2.0)℃, (98 ± 1.7)℃]. As, Cd, Cu, Pb and Zn concentrations remained relatively constant over the temperature range, but Ni and Cr concentrations greatly varied with the digestion temperature. The extent of variation in extraction efficiencies as compared to the concentration obtained at 66℃ was in following order; Ni (7.09% ~ 35.42%) > Cr (4.79% ~ 25.40%) > Zn (3.99% ~ 17.52%) > Cu (2.22% ~ 19.34%) > As (3.54% ~ 8.26%) > Cd (-5.08% ~ 1.08%) > Pb (-4.71% ~ -1.70%). The accuracy for certified reference materials at the digestion temperature of 80 and 85℃ was 98.7% ~ 105.8%. Therefore, digestion temperature of 80℃ ~ 85℃ is suggested to obtain reliable and reproducible data when the standard method by Korean Ministry of Environment is employed to analyze multiple heavy metal components in soil samples.

Operational Strategy of Anaerobic Digesters Considering Energy Balance (에너지수지를 고려한 혐기성소화시설의 운영방안)

  • Hong, Seong-Gu;Kwun, Soon-Kuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.4
    • /
    • pp.59-66
    • /
    • 2008
  • Anaerobic digestion system is getting more attractive in that it produces biogas in the process of organic waste stabilization. Net energy production is important when biogas production is concerned. In this study, net energy production was evaluated with respect to biogas production and heat losses in a hypothetical digester. Under the condition of digester operation with slurry inflow of 5% of TS, additional fuel is required to maintain digester temperature during the winder season. Substrate therefore, needs to have higher VS contents through co-digestion of silage or food waste that has greater values of methane production rate. Heating input slurry is important in cold season, which covers over 80% of heating requirement. Heat recovery from digestate is valuable to reduce the use of biogas for heating. It seems desirable to minimize slurry inflow when temperature is very low. Psychrophilic digestion may be a feasible option for reducing heating requirement.