• Title/Summary/Keyword: Diffusion weighted MRI

Search Result 166, Processing Time 0.02 seconds

Imaging Studies in Mouse Brain Using Clinical 3T MRI Scanner (임상용 3T MRI를 이용한 마우스 뇌의 영상)

  • Lim, Soo-Mee;Park, Eun-Mi
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.348-353
    • /
    • 2010
  • The purpose of this study was to explore the potentials of a clinical 3T MRI in mouse brains and technical adaptation and optimization. T1-weighted images (T1WI), T2-weighted images (T2WI), FLAIR (Fluid Attenuated Inversion Recovery) images, Gadolinium enhanced T1-weighted images (Gd-T1WI), Diffusion weighted images (DWI) were acquired in brain of 2 mice (weight 20~25 g) with cerebral infarction by occlusion of right middle cerebral artery, 1 hour, 24 hours, 72 hours after infarction and 1 normal mouse brain using clinical 3T MRI scanner. We analyzed differentiation of striatum, ventricle, cerebral cortex, and possibility of detection of acute cerebral infarction. We could differentiate the striatum, ventricle, cerebral cortex on T2WI and on DWI, FLAIR, T1WI, the differentiation of each anatomy of brain was not definite, but acute cerebral infarction was detected on DWI of 1 hour, 24 hours, 72 hours after infarction and on T2WI, FLAIR of 24 hours, 72 hours after infarction. Clinical 3T MRI can be used in differentiation of anatomy of mouse brains and DWI can be helpul in detection of acute cerebral infarction in acute phase. With technical adaptation and optimization clinical 3T MRI can be useful tool for provide preclinical and clinical small animal studies.

Thromboembolic Events after Coil Embolization of Cerebral Aneurysms : Prospective Study with Diffusion-Weighted Magnetic Resonance Imaging Follow-up

  • Chung, Seok-Won;Baik, Seung-Kug;Kim, Yong-Sun;Park, Jae-Chan
    • Journal of Korean Neurosurgical Society
    • /
    • v.43 no.6
    • /
    • pp.275-280
    • /
    • 2008
  • Objective : In order to assess the incidence of thromboembolic events and their clinical presentations, the present study prospectively examined routine brain magnetic resonance images (MRI) taken within 48 hours after a coil embolization of cerebral aneurysms. Methods : From January 2006 to January 2008, 163 cases of coil embolization of cerebral aneurysm were performed along with routine brain MRI, including diffusion-weighted magnetic resonance (DW-MR) imaging, within 48 hours after the embolization of the aneurysm to detect the silent thromboembolic events regardless of any neurological changes. If any neurological changes were observed, an immediate brain MRI follow-up was performed. High-signal-intensity lesions in the DW-MR images were considered as acute thromboembolic events and the number and locations of the lesions were also recorded. Results : Among the 163 coil embolization cases, 98(60.1%) showed high-signal intensities in the DW-MR imaging follow-up, 66 cases (67.0%) involved the eloquent area and only 6cases (6.0%) showed focal neurological symptoms correlated to the DW-MR findings. The incidence of DW-MR lesions was higher in older patients (${\geq}60$ yrs) when compared to younger patients (<60 yrs) (p=0.002, odd's ratio=1.043). The older patients also showed a higher incidence of abnormal DW-MR signals in aneurysm-unrelated lesions (p=0.0003, odd's ratio=5.078). Conclusion : The incidence of symptomatic thromboembolic attacks after coil embolization of the cerebral aneurysm was found to be lower than that reported in previous studies. While DW-MR imaging revealed a higher number of thromboembolic events, most of these were clinically silent and transient and showed favorable clinical outcomes. However, the incidence of DW-MR abnormalities was higher in older patients, along with unpredictable thromboembolic events on DW-MR images. Thus, in order to provide adequate and timely treatment and to minimize neurological sequelae, a routine DW-MR follow-up after coil embolization of cerebral aneurysms might be helpful, especially in older patients.

Current Status of Magnetic Resonance Imaging in Patients with Malignant Uterine Neoplasms: A Review

  • Yu-Ting Huang;Yen-Ling Huang;Koon-Kwan Ng;Gigin Lin
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.18-33
    • /
    • 2019
  • In this study, we summarize the clinical role of magnetic resonance imaging (MRI) in the diagnosis of patients with malignant uterine neoplasms, including leiomyosarcoma, endometrial stromal sarcoma, adenosarcoma, uterine carcinosarcoma, and endometrial cancer, with emphasis on the challenges and disadvantages. MRI plays an essential role in patients with uterine malignancy, for the purpose of tumor detection, primary staging, and treatment planning. MRI has advanced in scope beyond the visualization of the many aspects of anatomical structures, including diffusion-weighted imaging, dynamic contrast enhancement-MRI, and magnetic resonance spectroscopy. Emerging technologies coupled with the use of artificial intelligence in MRI are expected to lead to progressive improvement in case management of malignant uterine neoplasms.

Brain Magnetic Resolution Imaging to Diagnose Bing-Neel Syndrome

  • Kim, Ho-Jung;Suh, Sang-Il;Kim, Joo-Han;Kim, Byung-Jo
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.6
    • /
    • pp.588-591
    • /
    • 2009
  • Radiologic findings of Bing-Neel syndrome, which is an extremely uncommon complication resulting from malignant lymphocyte infiltration into the central nervous system (CNS) in patients with Waldenstr$\ddot{o}$m's macroglobulinemia (WM), have been infrequently reported due to extreme rarity of the case. A 75-year-old man with WM presented at a neurology clinic with progressive gait and memory disturbances, and dysarthria of 2 months duration. Cerebrospinal fluid and serum protein electrophoresis and immunofixation electrophoresis showed IgM kappa-type monoclonal gammopathy. Brain magnetic resonance imaging revealed multifocal, hyperintense lesions on T2 weighted-images. Brain diffusion-weighted imaging (DWI) demonstrated hyperintensities in cerebral and cerebellar lesions that appeared isointense on apparent diffusion coefficient maps, which were compatible with vasogenic edema. Although histologic analysis is a confirmative study to prove direct cell infiltration into the brain, brain MRI with DWI may be a good supportive study to diagnose Bing-Neel syndrome.

Cerebral Fat Embolism That Was Initially Negative on Diffusion-Weighted Magnetic Resonance Imaging

  • Go, Seung Je;Mun, Yun Su;Bang, Seung Ho;Cha, Yong Han;Sul, Young Hoon;Ye, Jin Bong;Kim, Jae Guk
    • Journal of Trauma and Injury
    • /
    • v.34 no.2
    • /
    • pp.126-129
    • /
    • 2021
  • Fat embolism syndrome is a rare, but serious condition that occurs in patients with fractures of the long bones or who undergo orthopedic surgery. The main clinical features of fat embolism syndrome are an altered mental status, hypoxia, and petechial rash. Cerebral fat embolism is the most severe manifestation of fat embolism syndrome because it can lead to an altered mental status. The diagnosis of cerebral fat embolism is clinical, but brain magnetic resonance image (MRI) is helpful. There is usually an interval until symptoms, such as an altered mental status, develop after trauma. We report a case of cerebral fat embolism in which the patient's mental status deteriorated several hours after trauma and the initial findings were negative on diffusion-weighted MRI.

The Usefulness of Deconvolution Perfusion CT in Patients with Acute Cerebral Infarction : Comparison with Diffusion MRI (급성 뇌경색 환자에서 Deconvolution perfusion CT의 유용성 : Diffusion MRI와 비교)

  • Eun, Sung-Jong;Kim, Young-Keun
    • Journal of radiological science and technology
    • /
    • v.26 no.3
    • /
    • pp.25-31
    • /
    • 2003
  • This study was performed to evaluate the usefulness of Deconvolution perfusion CT in patients with acute cerebral infarction. Nine patients with acute cerebral infarction underwent conventional CT and cerebral perfusion CT within 23 hours of the onset of symptoms. The perfusion CT scan for each patient was obtained at the levels of basal ganglia and 1cm caudal to the basal ganglia. By special imaging software, perfusion images including cerebral blood volume(CBV), cerebral blood flow(CBF), and mean transit time(MTT) maps were created. The created lesions were evaluated on each perfusion maps by 3 radiolocical technician. MTT delay time was measured in the perfusion defect lesion and symmetric contralateral normal cerebral hemisphere. Lesion sire were measured on each perfusion map and compared with the value obtained by diffusion weighted MR imaging(DWMRI). All perfusion CT maps showed the perfusion defect lesion in all patients. There were remarkable CT delay in perfusion defect lesion. In comparison of lesion size between each perfusion map and DWMRI, the lesion on CBF map was the most closely correlated with the lesion on DWMRI(7/9). The size of perfusion defect lesion on MTT map was larger than that of lesion on DWMRI, suggesting that m map can evaluate the ischemic penumbra. Deconvolution Perfusion CT maps make it possible to evaluate not only ischemic core and ischemic penumbra but also hemodynamic status in perfusion defect area. These results demonstrate that perfusion CT can be useful to the diagnosis and treatment in the patients with acute cerebral ischemic infarction.

  • PDF

SNR and ADC Changes at Increasing b Values among Patients with Lumbar Vertebral Compression Fracture on 1.5T MR Diffusion Weighted Images (1.5T MR 기기를 이용한 확산강조영상에서 b Value의 증가에 따른 요추압박골절 환자의 신호대 잡음비와 현성 확산 계수의 변화)

  • Cho, Jae-Hwan;Park, Cheol-Soo;Lee, Sun-Yeob;Kim, Bo-Hui
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.52-59
    • /
    • 2010
  • To examine among patients with vertebral compression fracture the extent to which signal-to-noise ratio (SNR) and Apparent Diffusion Coefficient (ADC) values at the lumbar vertebral compression fracture site vary on diffusion-weighted MR images according to varying b values on the 1.5T MR device. Diffusion-weighted MR images of 30 patients with compression fracture due to chronic osteoporosis who underwent vertebral MRI from Jan. 2008 to Nov. 2009 were respectively obtained using a 1.5-T MR scanner with the b values increased from 400, 600, 800, 1,000 to $1,200\;s/mm^2$. For diffusion-weighted MR images with different b values, the signal-to-noise ratio (SNR) was assessed at three sites: the site of compression fracture of the lumbar vertebral body at L1 to L5, and both the upper and lower discs of the said fracture site, while for ADC map images with different b values, the SNR and ADC were respectively assessed at those three sites. As a quantitative analysis, diffusion-weighted MR images and ADC map images with b value of $400\;s/mm^2$ (the base b values) were respectively compared with the corresponding images with each different b value. As far as qualitative analysis is concerned, for both diffusion-weighted MR and ADC map images with b value of $400\;s/mm^2$, the extent to which signal intensity values obtained at the site of compression fracture of the lumbar vertebral body at L1 to L5 vary according to the increasing b values were examined. The quantitative analysis found that for both diffusion-weighted MR and ADC map images, as the b values increased, the SNR were relatively lowered at all the three sites, compared to the base b value. Also, it was found that as the b values increased, ADC valueswere relatively lowered at all the three sites on ADC map images. On the other hand, the qualitative analysis found that as the b values increased to more than $400\;s/mm^2$, the signal intensity gradually decreased at all the sites, while at the levels of more than $1,000\;s/mm^2$, severe image noises appeared at all of the three sites. In addition, higher signal intensity was found at the site of compression fracture of the lumbar vertebral body than at the discs. Findings showed that with the b value being increased, both the signal-to-noise ratio (SNR) and Apparent Diffusion Coefficient (ADC) values gradually decreased at all the sites of the lumbar vertebral compression fracture and both the upper and lower discs of the fracture site, suggesting that there is a possibility of a wider range of applications to assessment of various vertebral pathologies by utilizing multi b values in the diffusion-weighted MRI examination.

Neonatal Seizures with Diffuse Cerebral White Matter Lesions on Magnetic Resonance Imaging Associated with Rotavirus Infection: A Report of Three Cases

  • Choi, Min Seon;Park, Sang Kee;Lee, Jae Hee
    • Neonatal Medicine
    • /
    • v.25 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • Rotavirus is the major cause of gastroenteritis in children under the age of 5. Rotavirus infection may lead to several neurological complications as meningitis, encephalitis, convulsion, encephalopathy, hemorrhagic shock, central pontine myelinolysis, Guillain-Barre syndrome, and Reye's syndrome. Further, some reports have described diffuse cerebral white matter lesions on diffusion-weighted magnetic resonance imaging (MRI) in neonates with rotavirus induced seizures. Here, we report on three neonates with rotavirus induced seizures with cerebral white matter abnormalities on MRI.

Background Breast Parenchymal Signal During Menstrual Cycle on Diffusion-Weighted MRI: A Prospective Study in Healthy Premenopausal Women

  • Yeon Soo Kim;Bo La Yun;A Jung Chu;Su Hyun Lee;Hee Jung Shin;Sun Mi Kim;Mijung Jang;Sung Ui Shin;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • v.25 no.6
    • /
    • pp.511-517
    • /
    • 2024
  • Objective: To prospectively investigate the influence of the menstrual cycle on the background parenchymal signal (BPS) and apparent diffusion coefficient (ADC) of the breast on diffusion-weighted MRI (DW-MRI) in healthy premenopausal women. Materials and Methods: Seven healthy premenopausal women (median age, 37 years; range, 33-49 years) with regular menstrual cycles participated in this study. DW-MRI was performed during each of the four phases of the menstrual cycle (four examinations in total). Three radiologists independently assessed the BPS visual grade on images with b-values of 800 sec/mm2 (b800), 1200 sec/mm2 (b1200), and a synthetic 1500 sec/mm2 (sb1500). Additionally, one radiologist conducted a quantitative analysis to measure the BPS volume (%) and ADC values of the BPS (ADCBPS) and fibroglandular tissue (ADCFGT). Changes in the visual grade, BPS volume (%), ADCBPS, and ADCFGT during the menstrual cycle were descriptively analyzed. Results: The visual grade of BPS in seven women varied from mild to marked on b800 and from minimal to moderate on b1200 and sb1500. As the b-value increased, the visual grade of BPS decreased. On b800 and sb1500, two of the seven volunteers showed the highest visual grade in the early follicular phase (EFP). On b1200, three of the seven volunteers showed the highest visual grades in EFP. The BPS volume (%) on b800 and b1200 showed the highest value in three of the six volunteers with dense breasts in EFP. Three of the seven volunteers showed the lowest ADCBPS in the EFP. Four of the seven volunteers showed the highest ADCBPS in the early luteal phase (ELP) and the lowest ADCFGT in the late follicular phase (LFP). Conclusion: Most volunteers did not exhibit specific BPS patterns during their menstrual cycles. However, the highest BPS and lowest ADCBPS were more frequently observed in EFP than in the other menstrual cycle phases, whereas the highest ADCBPS was more common in ELP. The lowest ADCFGT was more frequent in LFP.

Hypointensity on Susceptibility-Weighted Images Prior to Signal Change on Diffusion-Weighted Images in a Hyperacute Ischemic Infarction: a Case Study

  • Kim, Dajung;Lee, Hyeonbin;Jung, Jin-Man;Lee, Young Hen;Seo, Hyung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.131-134
    • /
    • 2018
  • Susceptibility-weighted imaging (SWI) is well known for detecting the presence of hemorrhagic transformation, microbleeds and the susceptibility of vessel signs in acute ischemic stroke. But in some cases, it can provide the tissue perfusion state as well. We describe a case of a patient with hyperacute ischemic infarction that had a slightly hypodense, patchy lesion at the left thalamus on the initial SWI, with a left proximal posterior cerebral artery occlusion on a magnetic resonance (MR) angiography and delayed time-to-peak on an MR perfusion performed two hours after symptom onset. No obvious abnormal signals at any intensity were found on the initial diffusion-weighted imaging (DWI). On a follow-up MR image (MRI), an acute ischemic infarction was seen on DWI, which is the same location as the lesion on SWI. The hypointensity on the initial SWI reflects the susceptibility artifact caused by an increased deoxyhemoglobin in the affected tissue and vessels, which reflects the hypoperfusion state due to decreasing arterial flow. It precedes the signal change on DWI that reflects a cytotoxic edema. This case highlights that, in some hyperacute stages of ischemic stroke, hypointensity on an SWI may be a finding before the hyperintensity is seen on a DWI.