• Title/Summary/Keyword: Diffusion rate

Search Result 1,758, Processing Time 0.026 seconds

Sorption and Leaching Characteristics of Diesel-Contaminated Soils Treated by Cold Mix Asphalt (Cold Mix Asphalt로 처리한 디젤 오염 토양의 흡착 및 용출특성)

  • Seo Jin-Kwon;Hwang Inseong;Park Joo-Yang
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2004
  • A cold mix asphalt (CMA) treatment process was proposed as a tool to recycle soils contaminated with petroleum hydrocarbons. Experimental studies were conducted to characterize performances of the CMA process in treating soils contaminated with diesel or diesel compounds. From the screening experiments, it was found that performances of five types of asphalt emulsions that contained a cationic or an anionic or a nonionic surfactant were not substantially different. In consideration of higher affinity for soils and higher sorption coefficients obtained, an emulsion containing Lauryl Dimethyl Benzyl Ammonium Chloride (LDBAC) was selected as a promising asphalt emulsion for treating diesel-contaminated soils. When the asphalt emulsion LDBAC was applied to treat three compounds that originated from diesel, the removal efficiencies obtained in the order of decreasing efficiencies were as follows: docosane > pentadecane > undecane. Leaching experiments on the specimen formulated by the emulsion LDBAC found that the selected treatment method could treat soils with diesel concentrations as high as 10,000 mg/kg. Leaching of the diesel from the specimen was controlled by diffusion for the first four days and then leaching rate diminished substantially. The latter behavior was characterized as depletion, which represents that the contaminant released amounts to more than $50\%$ of the total amount of the contaminant that can be leached. The amounts of three diesel compounds leached from the specimen in the order of decreasing amount were undecane, pentadecane, and docosane. The curing of the soil contaminated with pentadecane was relatively slow.

Effect of Fe on the High Temperature Oxidation of Ti-Al-Fe Alloys (Ti-Al-Fe계 합금의 고온산화거동에 미치는 Fe의 영향)

  • Yoon, Jang-Won;Hyun, Yong-Taek;Kim, Jeoung-Han;Yeom, Jong-Taek;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.357-363
    • /
    • 2011
  • In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.

Analysis of quality improvement effects by construction of sewer systems in Nam River Basin (남강 상류유역의 하수도시설 확충으로 인한 하류 수계의 수질개선 효과 분석)

  • Joo, Jin-Gul;Lee, Jung-Ho;Kim, Joong-Hoon;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.771-778
    • /
    • 2008
  • Effects of establishments of more sewer systems on water quality in Nam River, Deokchun River, and Jinyang Lake were analyzed for various scenarios using QUAL2E, WASP 7 water quality model. Three different scenarios were tested: 1) 20.8% of sewer diffusion rate which is same to the existing condition. 2) Expansion of sewer system to 65.2% which would emit less pollutants, BOD 2350.5 kg/d, TN 216.0 kg/d, TP 44.0kg/d. 3) Pollutants emission to maintain first grade water quality in Nam River, Jinyang Lake, BOD and TN in the case 2 were 7.69%, 2.10% lower than those in the case 1 in the Nam River. And in the Jinyang Lake, BOD, TN, and TP in the case 2 were 10.25%, 1.37%, 2.94% lower than those in the case 1. However the simulations showed that water quality could not hold down first grade water quality standard level with the establishments of more sewer systems. To satisfy the criteria in the Nam River and Jinyang Lake, BOD emission must be reduced 27.2%, 37.05% compared to those in the case 1.

A Study on the Diffusion of Silla Roof-End Tile (신라기와의 지방확산에 대한 검토)

  • Yang, Jong-Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.100-113
    • /
    • 2012
  • In the midst of recent active excavation, lots of Silla(新羅) roof-end tiles are unearthed in Yeongnam area(嶺南地域). These are confirmed the same tile frame as the Silla tiles excavated in Gyeongju(慶州). It is represented by the Silla tiles excavated in Ingaksa Temple(麟角寺) excavation research. Roof-end tile with arabesque design(唐草文平瓦當) etc. including roof-end tile with lotus design(蓮花文圓瓦當) are judged to be the tile frame produced by the same frame of roof-end tile that was excavated in Gyeongju, Wolseong(月城) and Hwangyongsa Temple(皇龍寺址). There are three kinds of cases concerning the transportation of tile manufacture ; the roof-end tile manufactured in Gyeongju directly moved to each region, only tile frame moved to site to be manufactured there, and tile manufacturer moved to site to manufacture there. This article considers the case of the roof-end tile manufactured in Gyeongju that was directly moved to each region. In case of the Silla tiles excavated in region especially Ingaksa Temple, the aspects of tiles in accordance with different era show the repeated coexistence, expansion and maintenance. This situation is significant as a clue to understand the supply from Gyeongju not as temporary, but as continuous. On the other hand, if the Gyeongju tiles flowed directly into each region, and if the road was built of gravels and the means of transportation was cart, the damage from movement must never be prevented. On the contrary, transportation through waterway might be advantageous due to the reduction of labor and damage rate and the easiness of loading. Accordingly, it tells us why the ruins where roof-end tiles were excavated located near big and small rivers or streams. Of course there are some ruins located in a fixed distance, but the distance may be enough to endure the impact put on tiles from the overland movement. Therefore, in case of direct inflow form long distance, transportation must be finished by overland movement after waterway movement.

Effect of soaking temperature on soaking characteristics of soybean (Glycine max) during rehydration process (콩의 수화 공정에서 수화 온도에 따른 콩(Glycine max)의 수화 및 단백질 용출 특성)

  • Park, Hyeon Woo;Han, Won Young;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.251-255
    • /
    • 2019
  • The effect of soaking temperature on the moisture uptake and the protein loss of soybeans during soaking process investigated. As the soaking temperature increased, the soaking rate significantly increased and Peleg model was suitable for describing the soaking characteristics of the soybean with high $R^2$ values (>0.991). The soaking time to achieve the target moisture content of soybean (130%) was estimated to be 12.6, 3.11 and 2.31 h at 25, 35 and $45^{\circ}C$, respectively. Peleg model well described the protein loss kinetics of soybean during soaking with high $R^2$ values (>0.941). The results showed that the protein loss of soybean at the target moisture content were 35.2, 93.1 and 103.0 mg/g at 25, 35 and $45^{\circ}C$, respectively. In this study, the optimum soaking condition for quality of soybean was 12.6 h of soaking time at $25^{\circ}C$.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

Study on Adsorption Characteristics of Perfluorinated Compounds(PFCs) with Structural Properties (과불화화합물 구조적 속성에 따른 흡착 특성 연구)

  • Choi, HyoJung;Kim, Deok Hyun;Yoon, JongHyun;Kwon, JongBeom;Kim, Moonsu;Kim, Hyun-Koo;Shin, Sun-Kyoung;Park, Sunhwa
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.20-28
    • /
    • 2021
  • Perfluorinated compounds(PFCs), an emerging environmental pollutant, are environmentally persistent and bioaccumulative organic compounds that possess a toxic impact on human health and ecosystems. PFCs are distributed widely in environment media including groundwater, surface water, soil and sediment. PFCs in contaminated solid can potentially leach into groundwater. Therefore, understanding PFCs partitioning between the aqueous phase and solid phase is important for the determination of their fate and transport in the environment. In this study, the sorption equilibrium batch and kinetic experiment of PFCs were carried out to estimated the sorption coefficient(Kd) and the fraction between aqueous-solid phase partition, respectively. Sorption branches of the PFDA(Perfluoro-n-decanoic acid), PFNA(Perfluoro-n-nonanoic acid), PFOA(Perfluoro-n-octanoic acid), PFOS(Perfluoro-1-octane sulfonic acid) and PFHxS(Perfluoro-1-hexane sulfonic acid) isotherms were nearly linear, and the estimated Kd was as follow: PFDA(1.50) > PFOS(1.49) > PFNA(0.81) > PFHxS(0.45) > PFOA(0.39). The sorption kinetics of PFDA, PFNA, PFOA, PFOS and PFHxS onto soil were described by a biexponential adsorption model, suggesting that a fast transport into the surface layer of soil, followed by two-step diffusion transport into the internal water and/or organic matter of soil. Shorter times(<20hr) were required to achieve equilibrium and fraction for adsorption on solid(F1, F2) increased with perfluorinated carbon chain length and sulfonate compounds in this study. Overall, our results suggested that not only the perfluorocarbon chain length, but also the terminal functional groups are important contributors to electrostatic and hydrophobic interactions between PFCs and soils, and organic matter in soils significantly affects adsorption maximum capacity than kinetic rate.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Antioxidant, Antimicrobial and Anti-inflammatory Effect of Boehmeria nivea var. nipononivea Extracts (섬모시풀(Boehmeria nivea var. nipononivea) 추출물의 항산화, 항균 및 항염증 효과에 대한 연구)

  • Jung, Gi Soo;Lee, Sun Hee;Yang, Soo-Kyung;Moon, Sung Pil;Song, Gwanpil;Kim, Ji Young
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.4
    • /
    • pp.339-348
    • /
    • 2020
  • The purpose of this study was to investigate the possible use of the Boehmeria nivea var. nipononivea extract and fractions for the development of natural cosmetic ingredients. The leaves of B. nivea var. nipononivea, extracted by 70% ethanol, were sequentially fractionated with n-hexane, dichloromethane, ethylacetate, and n-butanol. As a result of DPPH and ABTS test, ethyl acetate fractionation was shown to be excellent in radical scavenging activity. For the antimicrobial activities against Staphylococcus aureus, Staphylococcus epidermidis, Cutibacterium acnes and antibiotic resistant strains, MIC and birth control rate were observed by paper disc method. In the antibacterial activity by the disc diffusion assay against S. aureus, S. epidermidis and C. acnes, the dichloromethane and ethylacetate fraction showed stronger antibacterial activity than the other fractions and extract. Moreover, the ethylacetate fraction showed strong nitric oxide (NO) production inhibitory effect in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell. In conclusion, we found that B. nivea var. nipononivea extract was not cytotoxic and showed antioxidant, antimicrobial and anti-inflammatory effects. These results suggest that the Boehmeria nivea var. nipononivea extract and fractions could be applied as an effective cosmetic material with antioxidant activity.

Estimation of Potential Risk and Numerical Simulations of Landslide Disaster based on UAV Photogrammetry (무인 항공사진측량 정보를 기반으로 한 산사태 수치해석 및 위험도 평가)

  • Choi, Jae Hee;Choi, Bong Jin;Kim, Nam Gyun;Lee, Chang Woo;Seo, Jun Pyo;Jun, Byong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.675-686
    • /
    • 2021
  • This study investigated the ground displacement occurring in a slope below a waste-rock dumping site and estimated the likelihood of a disaster due to a landslide. To start with, photogrammetry was conducted by unmanned aerial vehicles (UAVs) to investigate the size and extent of the ground displacement. From April 2019 to July 2020, the average error rate of the five UAV surveys was 0.011-0.034 m, and an elevation change of 2.97 m occurred due to the movement of the soil layer. Only some areas of the slope showedelevation change, and this was believed to be due to thegroundwater generated during rainfall rather than the effect of the waste-rock load at the top. Sensitivity analysis for LS-RAPID simulation was performed, and the simulation results were compared and analyzed by applying a digital elevation model (DEM) and a digital surface model (DSM)as terrain data with 10 m, 5 m, and 4 m grids. When data with high spatial resolution were used, the extent of the sedimentation of landslide material tended to be excessively expanded in the DEM. In contrast, in the result of applying a DSM, which reflects the topography in detail, the diffusion range was not significantly affected even when the spatial resolution was changed, and the sedimentation behavior according to the river shape could be accurately expressed. As a result, it was concluded that applying a DSM rather than a DEM does not significantly expand the sedimentation range, and results that reflect the site situation well can be obtained.