• 제목/요약/키워드: Diffusion imaging

검색결과 435건 처리시간 0.025초

Transient global amnesia associated with multiple lesions in the corpus callosum and hippocampus

  • Kim, Jin-Ah;Min, Young Gi;Koo, Dae Lim
    • Annals of Clinical Neurophysiology
    • /
    • 제21권2호
    • /
    • pp.102-104
    • /
    • 2019
  • Transient global amnesia is a syndrome of temporary loss of short-term memory and is not accompanied by any other neurological deficit. Diffusion-weighted imaging is useful to improve the diagnostic accuracy of transient global amnesia. We report a 68-year-old woman with multiple lesions on diffusion-weighted imaging in the right corpus callosum and left hippocampus. To the best of our knowledge, this is the first case of a diffusion-weighted imaging lesion in the body portion of the corpus callosum.

Acute Acquired Metabolic Encephalopathy Based on Diffusion MRI

  • Se Jeong Jeon;See Sung Choi;Ha Yon Kim;In Kyu Yu
    • Korean Journal of Radiology
    • /
    • 제22권12호
    • /
    • pp.2034-2051
    • /
    • 2021
  • Metabolic encephalopathy is a critical condition that can be challenging to diagnose. Imaging provides early clues to confirm clinical suspicions and plays an important role in the diagnosis, assessment of the response to therapy, and prognosis prediction. Diffusion-weighted imaging is a sensitive technique used to evaluate metabolic encephalopathy at an early stage. Metabolic encephalopathies often involve the deep regions of the gray matter because they have high energy requirements and are susceptible to metabolic disturbances. Understanding the imaging patterns of various metabolic encephalopathies can help narrow the differential diagnosis and improve the prognosis of patients by initiating proper treatment regimen early.

Diffusion-Weighted Magnetic Resonance Imaging of the Breast: Standardization of Image Acquisition and Interpretation

  • Su Hyun Lee;Hee Jung Shin;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • 제22권1호
    • /
    • pp.9-22
    • /
    • 2021
  • Diffusion-weighted (DW) magnetic resonance imaging (MRI) is a rapid, unenhanced imaging technique that measures the motion of water molecules within tissues and provides information regarding the cell density and tissue microstructure. DW MRI has demonstrated the potential to improve the specificity of breast MRI, facilitate the evaluation of tumor response to neoadjuvant chemotherapy and can be employed in unenhanced MRI screening. However, standardization of the acquisition and interpretation of DW MRI is challenging. Recently, the European Society of Breast Radiology issued a consensus statement, which described the acquisition parameters and interpretation of DW MRI. The current article describes the basic principles, standardized acquisition protocols and interpretation guidelines, and the clinical applications of DW MRI in breast imaging.

뇌종양 영상의 현재와 미래 (Current Applications and Future Perspectives of Brain Tumor Imaging)

  • 박지은;김호성
    • 대한영상의학회지
    • /
    • 제81권3호
    • /
    • pp.467-487
    • /
    • 2020
  • 뇌종양의 진단 및 치료 반응 평가의 기본이 되는 영상기법은 해부학적 영상이다. 현재 임상에서 사용 가능한 영상기법들 중 확산 강조 영상 및 관류 영상이 추가적인 정보를 제공하고 있다. 최근에는 종양의 유전체 변이와 이질성 평가가 중요해지면서 라디오믹스와 딥러닝을 이용한 영상분석기법의 임상 응용이 기대되고 있다. 본 종설에서는 뇌종양 영상 임상 적용에서 여전히 중요한 해부학적 영상을 중심으로 한 자기공명영상 촬영 권고안, 최신 영상기법 중 확산 강조 영상 및 관류 영상의 기본 원리, 병태생리학적 배경 및 임상응용, 마지막으로 최근 컴퓨터 기술의 발전으로 많이 연구되고 있는 라디오믹스와 딥러닝의 뇌종양에서의 향후 활용가치에 대해 기술하고자 한다.

Review of Recent Advancement of Ultra High Field Magnetic Resonance Imaging: from Anatomy to Tractography

  • Cho, Zang-Hee
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권3호
    • /
    • pp.141-151
    • /
    • 2016
  • Purpose: Advances of magnetic resonance imaging (MRI), especially that of the Ultra-High Field (UHF) MRI will be reviewed. Materials and Methods: Diffusion MRI data was obtained from a healthy adult young male of age 30 using a 7.0T research MRI scanner (Magnetom, Siemens) with 40 mT/m maximum gradient field. The specific imaging parameters used for the data acquisition were a single shot DW echo planar imaging. Results: Three areas of the imaging experiments are focused on for the study, namely the anatomy, angiography, and tractography. Conclusion: It is envisioned that, in near future, there will be more 7.0T MRIs for brain research and explosive clinical application research will also be developed, for example in the area of connectomics in neuroscience and clinical neurology and neurosurgery.

Wallerian Degeneration of Insufficiently Affected White Matters in Old Infarction: Tract of Interest Analysis of Diffusion Tensor Imaging

  • Choi, Chi-Hoon;Lee, Jong-Min;Koo, Bang-Bon;Park, Jun-Sung;Kwon, Jun-Soo;Kim, Sun-I.
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권3호
    • /
    • pp.317-324
    • /
    • 2007
  • The application of diffusion tensor imaging (DTI) and fiber tractography to Wallerian degeneration (WD) is important because this technique is a very potent tools for quantitatively evaluating fiber tracts in vivo brain. We analyzed a case and control using tracts of interest (TOI) analysis to quantify WD. We scanned a case of old infarction and an age-matched healthy volunteer. T1 magnetization prepared rapid acquisition gradient echo (MPRAGE), fluid attenuated inversion recovery (FLAIR) and 12-direction diffusion tensor imaging (DTI) were obtained and analyzed using TOI analysis. The value of mean diffusity ($D_{av}$) and fracional anisotrophy (FA) were analyzed statistically by MWU test. A p-value of less than 0.05 was considered to indicate statistical significance. A comparison of the global fiber diffusion characteristics shows WD of both the corpus callosum and the ipsilateral superior longitudinal fasciculus. The corpus callosum in particular showed trans-hemispherical degeneration. Local fiber characteristics along the geodesic paths show WD in the corpus callosum, ipsilateral superior longitudinal fasciculus, ipsilateral corticospinal tract, and ipsilateral corticothalamic tract. We have demonstrated changes in $D_{av}$ and FA values and a clear correspondence with the WD in various tracts. TOI analysis successfully revealed radial WD in white matter tracts from a region of encephalomalacia and primary gliosis, although they were only slightly affected.

Differentiation of Benign from Malignant Adnexal Masses by Functional 3 Tesla MRI Techniques: Diffusion-Weighted Imaging and Time-Intensity Curves of Dynamic Contrast-Enhanced MRI

  • Malek, Mahrooz;Pourashraf, Maryam;Mousavi, Azam Sadat;Rahmani, Maryam;Ahmadinejad, Nasrin;Alipour, Azam;Hashemi, Firoozeh Sadat;Shakiba, Madjid
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권8호
    • /
    • pp.3407-3412
    • /
    • 2015
  • Background: The aim of this study was to evaluate and compare the accuracy of diffusion-weighted imaging (DWI), apparent diffusion coefficient (ADC) value, and time-intensity curve (TIC) type analysis derived from dynamic contrast-enhanced MR imaging (DCE-MRI) in differentiating benign from malignant adnexal masses. Materials and Methods: 47 patients with 56 adnexal masses (27 malignant and 29 benign) underwent DWI and DCE-MRI examinations, prior to surgery. DWI signal intensity, mean ADC value, and TIC type were determined for all the masses. Results: High signal intensity on DWI and type 3 TIC were helpful in differentiating benign from malignant adnexal masses (p<0.001). The mean ADC value was significantly lower in malignant adnexal masses (p<0.001). An ADC value< $1.20{\times}10^{-3}mm^2/s$ may be the optimal cutoff for differentiating between benign and malignant tumors. The negative predictive value for low signal intensity on DWI, and type 1 TIC were 100%. The pairwise comparison among the receiver operating characteristic (ROC) curves showed that the area under the curve (AUC) of TIC was significantly larger than the AUCs of DWI and ADC (p<0.001 for comparison of TIC and DWI, p<0.02 for comparison of TIC and ADC value). Conclusions: DWI, ADC value and TIC type derived from DCE-MRI are all sensitive and relatively specific methods for differentiating benign from malignant adnexal masses. By comparing these functional MR techniques, TIC was found to be more accurate than DWI and ADC.

Preoperative Weakness and Demyelination of the Corticospinal Tract in Meningioma Patients : Changes in Diffusion Parameters Using Diffusion Tensor Imaging

  • Kim, Myoung Soo;Chung, Chun Kee;Jung, Hee-Won;Park, Chul-Kee;Kim, Chi Heon;Kim, June Sic
    • Journal of Korean Neurosurgical Society
    • /
    • 제55권5호
    • /
    • pp.267-272
    • /
    • 2014
  • Objective : Differentiation of demyelination in white matter from axonal damage can be determined using diffusion tensor imaging (DTI). In this study using meningioma patients an attempt was made to evaluate the relationship between preoperative weakness and the changes of diffusion parameters in the corticospinal tract (CST) using DTI. Methods : Twenty-six patients with meningioma were enrolled in this study. Eleven of them suffered from objective motor weakness and were classified as Group 1. The remaining 15 patients did not present motor weakness and were classified as Group 2. Fiber tractography and CST diffusion parameters were obtained using DTIStudio. The ratios (lesion side mean value/contralateral side mean value) of CST diffusion parameters were compared with 1.0 as a test value using a one-sample t-test. Results : In Group 1, fractional anisotropy (FA), tensor trace (TT), and radial diffusivity (RD, ${\lambda}2$ and ${\lambda}3$) of the CST were significantly different between two hemispheres, but axial diffusivity (AD, ${\lambda}1$) of the CST was not significantly different between two hemispheres. In Group 2, FA and ${\lambda}3$ of CST did not differ significantly between the hemispheres. In Group 2, TT, ${\lambda}1$, and ${\lambda}2$ of CST in the ipsilateral hemisphere were significantly higher than those of the unaffected hemisphere. However, the differences were small. Conclusion : Motor weakness was related to a low FA and high TT resulting from increased RD of the CST fibers. CST diffusion changes in patients with weakness are similar to those for demyelination.

An Updated Review of Magnetic Resonance Neurography for Plexus Imaging

  • Joon-Yong Jung;Yenpo Lin;John A Carrino
    • Korean Journal of Radiology
    • /
    • 제24권11호
    • /
    • pp.1114-1130
    • /
    • 2023
  • Magnetic resonance neurography (MRN) is increasingly used to visualize peripheral nerves in vivo. However, the implementation and interpretation of MRN in the brachial and lumbosacral plexi are challenging because of the anatomical complexity and technical limitations. The purpose of this article was to review the clinical context of MRN, describe advanced magnetic resonance (MR) techniques for plexus imaging, and list the general categories of utility of MRN with pertinent imaging examples. The selection and optimization of MR sequences are centered on the homogeneous suppression of fat and blood vessels while enhancing the visibility of the plexus and its branches. Standard 2D fast spin-echo sequences are essential to assess morphology and signal intensity of nerves. Moreover, nerve-selective 3D isotropic images allow improved visualization of nerves and multiplanar reconstruction along their course. Diffusion-weighted and diffusion-tensor images offer microscopic and functional insights into peripheral nerves. The interpretation of MRN in the brachial and lumbosacral plexi should be based on a thorough understanding of their anatomy and pathophysiology. Anatomical landmarks assist in identifying brachial and lumbosacral plexus components of interest. Thus, understanding the varying patterns of nerve abnormalities facilitates the interpretation of aberrant findings.