• 제목/요약/키워드: Diffusion flame

검색결과 558건 처리시간 0.021초

분류 및 대향류 확산 소화염의 구조 및 NOx 생성특성 비교 검토 (A Study on Structures and NOx Formation Characteristics in Coflow and Counterflow Diffusion Flamelet)

  • 오창보;김종수;이창언;이기만
    • 한국연소학회지
    • /
    • 제3권2호
    • /
    • pp.29-40
    • /
    • 1998
  • Flame structures and NOx formation characteristics in the flame lets of coflow and counterflow diffusion flame are numerically studied. Calculations were carried out twice with the $C_2-Full$ and $C_2-Thermal$ Mechanism for each flame. Mixture fractions and scalar dissipation rates are used as the parameters to compare the flame let structures and NOx formation characteristics quantitatively. It was found that there is a similarity in flame temperature and stable species profiles except radical profiles between two flamelets. And there are some differences in NOx concentration and production rates. These results imply that the flow effects must be considered in calculations for NOx formation of turbulent flames using Laminar Flamelet Model.

  • PDF

예혼합 분무화염내의 이중적 액적 연소속도에 관한 관찰 (Observation on Double-droplet Combustion Speed in Premixed Spray Flame)

  • 이치우;심한섭
    • 한국자동차공학회논문집
    • /
    • 제12권6호
    • /
    • pp.119-126
    • /
    • 2004
  • In order to elucidate the modes of double-droplet combustion speed in premixed spray flame, the difference between flame propagation speed and droplet cluster disappearance speed are experimentally investigated using a premixed spray burner system, It was confirmed that flame speed concerned with premixed-mode combustion in the spray flame was approximately 2.0 m/s in average while mean disappearance speed of droplet clusters, which were dominated by diffusion-mode combustion in downstream of the flame, was evaluated as much as 0.45 m/s. It was clarified that both characteristics of premixed-mode and diffusion-mode combustion in spray flames are of much difference in nature, even though both speed, which are supposed to depend on local properties of the spray itself and flow conditions surrounding droplet clusters, are scattered in experiments.

저신장율 대향류확산화염에서 진동불안정성을 갖는 에지화염의 동적거동 (Dynamic Behaviors of Oscillating Edge-Flame in Low Strain Rate Counterflow Diffusion Flames)

  • 박준성;김현표;박정;김정수;길상인
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.65-72
    • /
    • 2006
  • Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified.

  • PDF

난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델 (Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer)

  • 김준홍;정석호;안국영;김종수
    • 한국연소학회지
    • /
    • 제8권3호
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF

혼합층의 지연효과를 배제한 비정상 대향류 확산 화염의 소화 (The extinction of unsteady counterflow diffusion flame without the retardation effect of a mixing layer)

  • 이은도;오광철;이기호;이춘범;이의주;신현동
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.93-101
    • /
    • 2003
  • The extinction of unsteady diffusion flame was experimentally studied in an opposing jet counterflow burner using diluted methane. The stabilized flame was perturbed by linearly varying velocity change that was generated by pistons installed on both sides of the air and fuel stream. As the results, the extinction of unsteady flame is dependent not only on the history of unsteadiness, but also on the initial condition. We found that there are several unsteady effects on the flame extinction. First, the extinction strain rates of unsteady cases are extended well beyond steady state extinction limits. Second, as the slope of the strain rate change increases, the unsteady extinction strain rate becomes larger. Third, the extension of unsteady extinction strain rate becomes smaller as the initial strain rate increases. We also found that the extension of the extinction limit mainly results from the unsteady response of the reaction zone because there is no retardation effect of a mixing layer for our experimental condition.

  • PDF

방사와 투과를 이용한 층류확산화염내 매연입자의 온도 및 농도 측정 (Soot Temperature and Concentration Measurement Using Emission/Transmission Tomography in Laminar Diffusion Flame)

  • 송상종;박성호;김상수
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2563-2573
    • /
    • 1993
  • The measurements of monochromatic line-of-sight flame emission and light transmission in the same path having small spatial resolution were performed in an axisymmetric laminar propane $C_{3}H_{8}$ diffusion flame. The light wavelengthes of 632 nm, 800nm, 900nm were used. From these measurements, local point soot radiances (by Kirchhoff's law) and absorption coefficients were reconstructed by tomography. Thus local point soot temperatures and concentrations were obtained. The reconstructed soot temperatures and concentrations of local points have no differences between the case of visible range (632 nm) and the case of infrared range (800 nm and 900 nm). In these ranges, the scattering coefficient is much lower than the absorption coefficient. Soot mean temperature over the path also matches well with local soot temperature in outer region of the flame. Temperature measurement by thermocouple with different bead diameters $(222{\mu}m and 308{\mu}m)$ was carried in the same flame. Rapid insertion technique was used and radiation effect was considered. Radiation correction in the sooting region was carried out and the corrected result was in good agreement with the local soot temperature.

벽면 충돌 난류 확산화염의 특성 (The Characteristics of Turbulent Diffusion Flame Impinging on the Wall)

  • 박용열;김호영
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.175-184
    • /
    • 1999
  • A theoretical study on the turbulent round jet diffusion flame impinging on the wall was carried out to predict the characteristics and structure of Impinging jet flame and heat transfer to the wall. Finite chemistry via Arrhenius equation and eddy dissipation model was adopted as a combustion model, and the Favre averaging and $k-{\varepsilon}$ model were Introduced In the theoretical modeling. The SIMPLE algorithm was applied to the calculation. All the transport properties were considered as the variable depending on the temperature and composition. For the parametric study, the distance from nozzle to impinging wall and Reynolds number at nozzle exit were chosen 88 the major parameters. As the results of the present study, the characteristics of flow fields, the distributions of main variables and each chemical species and the flame shapes were obtained. The heat transfer rate from the flame to the wall and the effective heating area were calculated to investigate the Influences of the major parameters on the heat transfer characteristics.

동축류 확산화염의 불안정성과 제어에 관한 실험적 연구 (An experimental study on instability and control of co-flow diffusion flames)

  • 이현호;황준영;정석호;이원남
    • 대한기계학회논문집B
    • /
    • 제21권1호
    • /
    • pp.153-164
    • /
    • 1997
  • Flame oscillation phenomena in a co-flow diffusion flame was experimentally studied with periodic fuel supply using a solenoid valve. The degree of excitation was controlled by changing the volume flux of fuel passing through the valve. Flame oscillation frequencies were measured utilizing a photodiode, a spectrum analyzer, video and high speed movies. Laser planar visualization was employed to study the correlation between the flame oscillation and the toroidal vortices. Observed are three regimes of flame oscillation, where the oscillation frequencies are for the multiples of excitation, the excitation itself and the flame natural oscillation. Both periods of natural oscillation and of excitation induced oscillation exist over one cycle of the excitation in the frequency multiplied regime. It is considered as an effect of balancing the influence of buoyancy driven vortex with that of excitation induced vortex near the excitation rate of 0.2. Flame shapes are become monotonous as increasing the excitation frequency to the range of over two fold of the natural oscillation. The flame oscillation can be modulated to the frequency of either multiples of excitation or excitation itself under certain conditions. This implies that the flame oscillation could be modulated to avoid the resonance frequency of the combustor, and shows the possibility of active control of the flame oscillation.

미소중력환경을 이용한 벽면근방 확산화염내 매연부착거동의 원위치 관찰 (In-situ Observation of Soot Deposition Behavior in a Diffusion Flame along Solid Wall by using Microgravity Environment)

  • 최재혁;후지타 오사무
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.907-914
    • /
    • 2005
  • Experiments at the Japan Microgravity Center (JAMIC) have investigated the interaction between diffusion flames and solid surfaces Placed neat flames The fuel for the flames was $C_{2} H_{4}$ The surrounding oxygen concentration was 35$\%$ with surrounding air temperatures of $T_{a}$ : 300K. Especially, the effect of wall temperature on soot deposition from a diffusion flame Placed near the wall has been studied by utilizing microgravity environment, which can attain very stable flame along the wall. Cylindrical burner with fuel injection was adopted to obtain two dimensional soot distributions by laser extinction method. In the experiment two different wall temperatures. $T_{w}$=300, 800 K, were selected as test conditions The results showed that the soot distribution between flame and burner wall was strong1y affected by the wall temperature and soot deposition increases with decrease in wall temperature. The comparison among the values lot two different wall temperatures suggests that the change in thermophoretic effect is the most dominant factor to give the change in soot deposition characteristics.

자기장 분포가 확산화염의 연소특성에 미치는 영향: 자기장 On/Off 주기와 Duty Ratio의 역할 (The Influence of Magnetic Field on Diffusion Flames: Role of Magnetic Field On/Off Frequency and Duty Ratio)

  • 이원남;배승만
    • 한국연소학회지
    • /
    • 제17권1호
    • /
    • pp.58-65
    • /
    • 2012
  • The influence of magnetic field on propane and acetylene diffusion flames have been experimentally investigated using an electromagnetic system. Periodically induced magnetic field having various frequencies and duty ratios was established in square wave form. The maximum intensity and gradient of magnetic field were 1.3 T and 0.27 T/mm, respectively. The width of a propane flame was reduced up to 4.5% and the brightness was enhanced up to 25% when the magnetic field was induced. The soot emission from an acetylene flame was ceased when magnetic field was induced. The alteration of flow field, which is due to the paramagnetic characteristics of oxygen molecule, is most likely to be responsible for the change in flame size and brightness. The effect of magnetic field on diffusion flames, which competes with the gravitational effect, was more apparent from a smaller size flame. The magnetic field effect, therefore, could be important under microgravity conditions. Since the time required to alter the flow field must be finite, the magnetic field effect is likely to be less significant for a periodically oscillating magnetic field at a high frequency or having a small duty ratio.