• Title/Summary/Keyword: Diffusion Transformation

Search Result 148, Processing Time 0.022 seconds

Atomistic Investigation of Lithiation Behaviors in Silicon Nanowires: Reactive Molecular Dynamics Simulation

  • Jeong, Hyeon;Ju, Jae-Yong;Jo, Jun-Hyeong;Lee, Gwang-Ryeol;Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.160.2-160.2
    • /
    • 2014
  • Recently silicon has attracted intense interest as a promising anode material of lithium-ion batteries due to its extremely high capacity of 4200 mA/g (for Li4.2Si) that is much higher than 372 mAh/g (for LiC6) of graphite. However, it seriously suffers from large volume change (even up to 300%) of the electrode upon lithiation, leading to its pulverization or mechanical failure during lithiation/delithiation processes and the rapid capacity fading. To overcome this problem, Si nanowires have been considered. Use of such Si nanowires provides their facile relaxation during lithiation/delithiation without mechanical breaking. To design better Si electrodes, a study to unveil atomic-scale mechanisms involving the volume expansion and the phase transformation upon lithiation is critical. In order to investigate the lithiation mechanism in Si nanowires, we have developed a reactive force field (ReaxFF) for Si-Li systems based on density functional theory calculations. The ReaxFF method provides a highly transferable simulation method for atomistic scale simulation on chemical reactions at the nanosecond and nanometer scale. Molecular dynamics (MD) simulations with the ReaxFF reproduces well experimental anisotropic volume expansion of Si nanowires during lithiation and diffusion behaviors of lithium atoms, indicating that it would be definitely helpful to investigate lithiation mechanism of Si electrodes and then design new Si electrodes.

  • PDF

Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries

  • Charkravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.47-62
    • /
    • 2005
  • The present study deals with a mathematical model describing the dynamic response of heat and mass transfer in blood flow through bifurcated arteries under stenotic condition. The geometry of the bifurcated arterial segment possessing constrictions in both the parent and the daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is formulated mathematically with the introduction of the suitable curvatures at the lateral junction and the flow divider. The blood flowing through the artery is treated to be Newtonian. The nonlinear unsteady flow phenomena is governed by the Navier-Stokes equations while those of heat and mass transfer are controlled by the heat conduction and the convection-diffusion equations respectively. All these equations together with the appropriate boundary conditions describing the present biomechanical problem following the radial coordinate transformation are solved numerically by adopting finite difference technique. The respective profiles of the flow field, the temperature and the concentration and their distributions as well are obtained. The influences of the stenosis, the arterial wall motion and the unsteady behaviour of the system in terms of the heat and mass transfer on the blood stream in the entire arterial segment are high­lighted through several plots presented at the end of the paper in order to illustrate the applicability of the present model under study.

A Study on Reaction Kinetics of PTMG/TDI Prepolymer with MOCA by Non-Isothermal DSC

  • Ahn, WonSool;Eom, Seong-Ho
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.92-97
    • /
    • 2015
  • A study on reaction kinetics for a PTMG/TDI prepolymer with 2,2'-dichloro-4,4'-methylenedianiline (MOCA), of which formulations may be generally used for fabricating high performance polyurethane elastomers, was peformed using non-isothermal differential scanning calorimetry (DSC). A number of thermograms were obtained at several constant heating rates, and analysed using Flynn-Wall-Ozawa (FWO) isoconversional method for activation energy, $E_a$ and extended-Avrami equation for reaction order, n. Urea formation reaction of the present system was observed to occur through the simple exothermic reaction process in the temperature range of $100{\sim}130^{\circ}C$ for the heating rate of $3{\sim}7^{\circ}C/min$. and could be well-fitted with generalized sigmoid function. Though activation energy was nearly constant as $53.0{\pm}0.5kJ/mol$, it tended to increase a little at initial stage, but it decreases at later stage by the transformation into diffusion-controlled reaction due to the increased viscosity. Reaction order was evaluated as about 2.8, which was somewhat higher than the generally well-known $2^{nd}$ order values for the various urea reactions. Both the reaction order and reaction rate explicitly increased with temperature, which was considered as the indication of occurring the side reactions such as allophanate or biuret formation.

Analysis of the Carburizing Heat Treatment Process for SNCM Alloy Steel Using the Finite Element Method (유한요소법을 이용한 SNCM 합금강의 침탄열처리 공정 해석)

  • Choi S.C.;Lee D.J.;Kim H.Y.;Kim H.J.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1284-1292
    • /
    • 2006
  • Heat treatment is a controlled heating and cooling process to improve the physical and/or mechanical properties of metal products without changing their shapes. Today finite element method is widely used to simulate lots of manufacturing processes including heat treatment and surface hardening processes, which aims to reduce the number of time- and cost-consuming experimental tryouts. In this study we tried, using this method, to simulate the full carburizing process that consists of carburizing, diffusing and quenching, and to predict the distribution of carbon contents, phase fraction and hardness, thermal deformation and other mechanical characteristics as the results. In the finite element analysis deformation, heat transfer, phase transformation and diffusion effects are taken into consideration. The carburizing process of a lock gear, a part of the car seat recliner, that is manufactured by the fine blanking process is adopted as the analysis model. The numerical results are discussed and partly compared with experimental data. And a combination of process parameters that is expected to give the highest surface hardness is proposed on the basis of this discussion.

Hydrogen Delayed Fracture of TRIP Steel by Small Punch Test (소형펀치시험에 의한 TRIP강의 수소 지연파괴 거동)

  • Choi, Jong-Un;Park, Jae-Woo;Kang, Kae-Myung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • The strain-induced phase transformation from austenite to martensite is responsible for the high strength and ductility of TRIP steels. However high strength steels are susceptible to hydrogen embrittlement. This study aimed to evaluate the effects of hydrogen on the behavior of hydrogen delayed fracture in TRIP steel with hydrogen charging conditions. The electrochemical hydrogen charging was conducted at each specimen with varying current density and charging time. The relationship between hydrogen concentration and mechanical properties of TRIP steel was established by SP test and SEM fractography. The maximum loads and displacements of the TRIP steel in SP test decreased with increasing hydrogen charging time. The results of SEM fractography investigation revealed typical brittle mode of failure. Thus it was concluded that hydrogen delayed fracture in TRIP steel result from the diffusion of hydrogen through the ${\alpha}$' phase.

Conversion Process of Amorphous Si-Al-C-O Fiber into Nearly Stoichiometric SiC Polycrystalline Fiber

  • Usukawa, Ryutaro;Oda, Hiroshi;Ishikawa, Toshihiro
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.610-614
    • /
    • 2016
  • Tyranno SA (SiC-polycrystalline fiber, Ube Industries Ltd.) shows excellent heat-resistance up to $2000^{\circ}C$ with relatively high mechanical strength. This fiber is produced by the conversion process from a raw material (amorphous Si-Al-C-O fiber) into SiC-polycrystalline fiber at very high temperatures over $1500^{\circ}C$ in argon. In this conversion process, the degradation reaction of the amorphous Si-Al-C-O fiber accompanied by a release of CO gas for obtaining a stoichiometric composition and the subsequent sintering of the degraded fiber proceed. Furthermore, vaporization of gaseous SiO, phase transformation and active diffusion of the components of the Si-Al-C-O fiber competitively occur. Of these changes, vaporization of the gaseous SiO during the conversion process results in an abnormal SiC-grain growth and also leads to the non-stoichiometric composition. However, using a modified Si-Al-C-O fiber with an oxygen-rich surface, vaporization of the gaseous SiO was effectively prevented, and then consequently a nearly stoichiometric SiC composition could be obtained.

A Study of Crystallization and Fracture Toughness of Glass Ceramics in the $ZrO_2.SiO_2$ Systems Prepared by the Sol-Gel Method (졸-겔법으로 제조한 $ZrO_2.SiO_2$계 결정화유리의 결정화 및 파괴인성에 관한 연구)

  • 신대용;한상목;강위수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.1
    • /
    • pp.50-56
    • /
    • 2000
  • Precursor gels with the composition of xZrO2·(100-x)SiO2 systems (x=10, 20 and 30 mol%) were prepared by the sol-gel method. Kinetic parameters, such as activation energy, Avrami's exponent, n, and dimensionality crystal growth value, m, have been simultaneously calculated from the DTA data using Kissinger and Matusita equations. The crystallite size dependence of tetragonal to monoclinic transformation of ZrO2 was investigated using XRD, in relation to the fracture toughness. The crystallization of tetragonal ZrO2 occurred through 3-dimensional diffusiion controlled growth(n=m=2) and the activation energy for crystallization was calculated using Kissinger and Matusita equations, as about 310∼325±10kJ/mol. The growth of t-ZrO2, in proportion to the cube of radius, increased with increasing heating temperature and hteat-treatment time. It was suggested that the diffusion of Zr4+ ions by Ostwald ripening was rate-limiting process for thegrowth of t-ZrO2 crystallite size. The fracture toughness of xZrO2·(100-x)SiO2 systems glass ceramics increased with increasing crystallite size of t-ZrO2. The fracture toughness of 30ZrO2·70SiO2 system glass ceramics heated at 1,100℃ for 5h was 4.84 MPam1/2 at a critical crystaliite size of 40 nm.

  • PDF

Effects of Catalysts on Properties of Sol-Gel Derived $PbTiO_3$ Thin Film ($PbTiO_3$ 졸-겔 박막의 특성에 미치는 촉매의 영향)

  • 김승현;김창은;정형진;오영제
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.793-801
    • /
    • 1996
  • The effect of catalysts which was catalyzed by acid($HNO_3$) and base ($NH_4OH$) or not on the surface microst-ructures and consequent dielectric characteristics of the $PbTiO_3$ thin films prepared by sol-gel method were investigated. The result indicated that bse catalyst promoted the phase transformation of perovskite phase while acid catalyst was found to produce most uniform surface microstructure and improved dielectric properties However degradation of properties due to secondary phase formation and non-uniform microstructure at high annealing temperature (>75$0^{\circ}C$) by rapid diffusion of lead was unavoidable in any case as long as $Si_{(100)}$ \ $SiO_2$ \Pt substrate used.

  • PDF

Characteristic Studies on Electro-Discharge-Sintering of Ti5Si3 Powder Synthesized by Mechanical Alloying (기계적 합금화에 의해 제조된 Ti5Si3 분말의 전기방전소결 특성 연구)

  • Cheon, Yeon-wuk;Cho, Yu-jung;Kang, Tae-ju;Kim, Jung-yeul;Park, Jun-sik;Byun, Chang-sup;Lee, Sang-ho;Lee, Won-hee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.660-666
    • /
    • 2009
  • The consolidation of mechanical alloyed $Ti_5Si_3$ powder by electro-discharge-sintering has been investigated. A single pulse of 2.5 to 8.0 kJ/0.34 g was applied to each powder mixture using 300 and $450{\mu}F$ capacitors. A bulk-like solid with $Ti_5Si_3$ phase has been successfully fabricated by the discharge with an input energy of more than 2.5 kJ in less than $160{\mu}sec$. Micro-Vickers hardness was found to be higher than 1350, which is significantly higher than that of a conventional high temperature sintered sample. The formation of $Ti_5Si_3$ and consolidation occurred through a fast solid state diffusion reaction.

Solid Particle Erosion Properties of Hot-Dip Aluminized Economizer Steel Tube (용융 알루미늄 도금된 절탄기 강재 튜브의 고상입자 침식 특성)

  • Park, Il-Cho;Han, Min-Su
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.384-390
    • /
    • 2021
  • In this paper, durability evaluation and surface damage mechanism were investigated through solid particle erosion (SPE) test after applying hot-dip aluminizing (HDA) technology for the purpose of maintenance of marine economizer tube. Damaged surface shape was analyzed using SEM and 3D microscope. Compositional changes and microstructure of the HDA layer were analyzed through EDS and XRD. Durability was evaluated by analyzing weight loss and surface damage depth after SPE. HDA was confirmed to have a two-layer structure of Al and Al5Fe2. HDA+HT was made into a single alloy layer of Al5Fe2 by diffusion treatment. In the microstructure of HDA+HT, void and crack defect were induced during the crystal phase transformation process. The SPE damage mechanism depends on material properties. Plastic deformation occurred in the substrate and HDA due to ductility, whereas weight loss due to brittleness occurred significantly in HDA+HT. As a result, the substrate and HDA showed better SPE resistance than HDA+HT.